

UCD School of Mathematics and Statistics

University College Dublin Belfield, Dublin 4, Ireland

Tel +353 1 716 2580 Fax +353 1 716 1196

Scoil na Matamaitice agus na Staitisticí UCD

An Coláiste Ollscoile, Baile Átha Cliath Belfield, Baile Átha Cliath 4, Éire

Email seminars@maths.ucd.ie
Web maths.ucd.ie/seminars

Working Group on Statistical Learning Seminar

Damien McParland

will speak on

Latent Variable Models for Ordinal Data

Fri 1st April 2011 at 1:00PM

Location: Statistics Seminar Room- L550 Library building

Ordinal data arise in many contexts and item response modelling is a long established method for analysing this type of data.

The ordinal response for individual i on item j is denoted Y_{ij} , where $i=1,\ldots,N$ and $j=1,\ldots,J$. Corresponding to each ordinal data point Y_{ij} is a latent Gaussian variable Z_{ij} . The value of Y_{ij} is observed to be level k if the latent Gaussian variable Z_{ij} lies within a specified interval. In addition, another latent Gaussian variable θ_i , often called a latent trait, is used to model the underlying attributes of individual i. The mean of Z_{ij} depends on θ_i , i.e.

$$Z_{ij} \sim N(a_j\theta_i - b_j, 1)$$

In the item response literature, a_j and b_j are typically known as discrimination and difficulty parameters respectively.

The extension to a mixture of two parameter item response models, which provides clustering capabilities in the context of ordinal data is also explored. In this context the mean of Z_{ij} also depends on which group individual i belongs to, i.e.

$$Z_{ij} \sim N(a_{gj}\theta_i - b_{gj}, 1)$$

where a_{gj} and b_{gj} are group specific discrimination and difficulty parameters.

UCD School of Mathematics and Statistics

University College Dublin Belfield, Dublin 4, Ireland

Tel +353 1 716 2580 Fax +353 1 716 1196

Scoil na Matamaitice agus na Staitisticí UCD

An Coláiste Ollscoile, Baile Átha Cliath Belfield, Baile Átha Cliath 4, Éire

Email seminars@maths.ucd.ie
Web maths.ucd.ie/seminars

Estimation of both of these models within the Bayesian paradigm is achieved using a Metropolis-within-Gibbs sampler.

This talk is part of the **Working Group on Statistical Learning** series. For more, see https://maths.ucd.ie/seminars