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Abstract: Let L be a given multiset of n ¿ 1 elements in an integral domain R and let
P be a matrix of order n with p prescribed entries that belong to R. We are interested
in the following type of completion problems: under what assumptions of R, p and the
position of the prescribed entries (with as few restrictions as possible) is it possible
to complete P over R to obtain a matrix A with spectrum L? There is a classical result
by Herskowitz [1] that says that for R a

field, p = 2n - 3, and the prescribed entries in arbitrary positions, except for two
exceptions, it is possible to complete P. For this classical result we will describe and
algorithm that constructs the desired completion. Then, we will extend the result to
integral domains and also describe an algorithm that

finds such a completion [2]. We will say what properties do these particular comple-
tions have. We will also explain why 2n - 3 is a natural bound and if it is possible



to go beyond 2n - 3, and fi

nally what other approaches to these type of problems we can

find in the literature ([3] and [4]).
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