

Analysis Seminar

Title: Spirals in Spaces of Holomorphic Functions

Speaker: Andrew D. Smith

Date: Tue 17th September 2024 at 3:00PM

Location: E0.32 (beside Pi restaurant)

Abstract: Functions W(t, z) of real time $t \ge 0$ and $z \in \mathbb{C}$ satisfy the spiral relation:

 $W(2t, z) = (1 + e^z)W(t, z)$

For fixed t, these are holomorphic functions of z in the region:

$$\left|\Im z\right| < \cos^{-1}\left[-12e^{-\left|\Re z\right|}\right]$$

Viewed as functions of t, for fixed z, the functions W(t, z) are Hólder continuous and nowhere differentiable. They have a time-homogeneity property if $\Re z = 0$, while for $\Im z = \pm \frac{1}{2}\pi$ the paths have finite quadratic variation; a property also associated with semi-martingale paths in the theory of stochastic processes.

The W functions can produce beautiful images. Familiar fractal sets: Lévy's C-curve, Heighway's dragon curve and van Roy's unicorn curve arise as the loci of W(t,z) when $0 \le t \le 1$ and $z = \pm \frac{1}{2}i\pi$, that is, functions of t that satisfy both the time-homogeneity and quadratic variation criteria.

https://ucd-ie.zoom.us/j/61064699009

https://ucd-ie.zoom.us/j/61064699009