

Analysis Seminar

Title:	Lipschitz-free spaces over properly metrisable spaces and approx- imation properties
Speaker:	Filip Talimdjioski
Date:	Tue 5th December 2023 at 12:00AM
Location:	E0.32 (beside Pi restaurant)

Abstract: Let T be a topological space admitting a compatible proper metric, that is, a locally compact, separable and metrisable space. Let \mathcal{M}^T be the non-empty set of all proper metrics d on T compatible with its topology, and equip \mathcal{M}^T with the topology of uniform convergence, where the metrics are regarded as functions on T^2 . We prove that the set $\mathcal{A}^{T,1}$ of metrics $d \in \mathcal{M}^T$ for which the Lipschitz-free space $\mathcal{F}(T,d)$ has the metric approximation property is a dense set in \mathcal{M}^T , and is furthermore residual in \mathcal{M}^T when T is zero-dimensional. We also prove that if T is uncountable then the set \mathcal{A}^T_f of metrics $d \in \mathcal{M}^T$ for which $\mathcal{F}(T,d)$ fails the approximation property is dense in \mathcal{M}^T . Combining the last statement with a result of Dalet, we conclude that for any 'properly metrizable' space T, \mathcal{A}^T_f is either empty or dense in \mathcal{M}^T .

https://ucd-ie.zoom.us/j/62550342649

https://ucd-ie.zoom.us/j/62550342649