

Analysis Seminar

Title: The continuity of betweenness

Speaker: R. Smith

Date: Fri 27th October 2017 at 4:00PM

Location: UCD Science North 125

Abstract: Given a set X , we can use a suitable ternary relation $[\cdot, \cdot, \cdot] \subseteq X^3$ to express the notion of 'betweenness' on X : x is between a and b if and only if $[a, x, b]$ holds. We assume that this relation is "basic": $[a, a, b]$ and $[a, b, b]$ always hold, $[a, x, b]$ implies $[b, x, a]$, and $[a, x, a]$ implies $x = a$. Many natural examples of betweenness arise when X is endowed with some additional order-theoretic or topological structure. Given $a, b \in X$, we can define the "interval" $[a, b] = \{x \in X : [a, x, b]\}$ ($= [b, a]$). If X has additional topological structure, it is reasonable to ask whether the assignment $\{a, b\} \mapsto [a, b]$ has good continuity properties, given a suitable hyperspace topology. We examine this question in the context of "Menger betweenness" on metric spaces (X, d) ($[a, x, b]$ holds if and only if $d(a, b) = d(a, x) + d(x, b)$), and the "K-interpretation of betweenness" on topological continua ($[a, x, b]$ holds if and only if x is an element of every subcontinuum that includes a and b).