11 Path-Connected Sets

11.1 Definition
Suppose that A is a non-empty subset of M and that x and $y \in A$. Then a continuous function $f : [0, 1] \rightarrow A$ where $f(0) = x$ and $f(1) = y$ is called a path in A from x to y.

11.2 If f is a path in A from x to y then
$$f([0, 1]) = \{f(t) \in A \mid 0 \leq t \leq 1\}$$
is called an arc in A that joins x to y.

11.3 Suppose that α and $\beta \in \mathbb{R}$ where $\alpha < \beta$ and that $f : [\alpha, \beta] \rightarrow M$ is continuous. Then
$$g : [0, 1] \rightarrow M : t \rightarrow f((1-t)\alpha + t\beta)$$is continuous, $g(0) = f(\alpha)$, and $g(1) = f(\beta)$. Thus we could use any non-trivial compact interval as the domain of a path.

11.5 For more information about equivalence relations and the proof of Part (iii) of Theorem 11.4 see Appendix B.

11.6 Definition
A subset A of M is said to be path-connected if and only if, for all $x, y \in A$, there is a path in A from x to y.

11.7 A set A is path-connected if and only if any two points in A can be joined by an arc in A.

11.8 The expressions “pathwise-connected” and “arcwise-connected” are often used instead of “path-connected”.

11.9 Throughout this chapter we shall take “$x \sim y$ in A” to mean “there is a path in A from x to y”. Thus A is path-connected if and only if, for all $x, y \in A$, $x \sim y$ in A.

11.10 Theorem
Suppose that A is a subset of M. Then if A is path-connected then A is connected.

Proof
Suppose that A is a path-connected subset of M. We shall prove that A is not disconnected.

Suppose that
$$A \text{ is disconnected.} \quad (1)$$
Since A is disconnected, by Corollary 10.12, there is a continuous two-valued function $f : A \rightarrow E_1$.

Since $f(A) = \{0, 1\}$, there exist x and $y \in A$ such that $f(x) = 0$ and $f(y) = 1$.

11.11 Lemma
Every open ball in E_n is path-connected.

Proof
Suppose that $a \in E_n$ and that $p > 0$. Suppose that $x \in B(a, p)$. The function
$$f : [0, 1] \rightarrow E_n : t \rightarrow (1-t)a + tx$$is continuous, $f(0) = a$, and $f(1) = x$.
is easily shown to be continuous. Also, for all $t \in [0,1]$,
\[\|f(t) - a\| = \|v - a\| = |t|\|x - a\| < \rho. \]
Therefore, for all $t \in [0,1]$, $f(t) \in B(a,\rho)$. Furthermore, $f(0) = a$ and $f(1) = x$. Therefore f is a path in $B(a,\rho)$ from a to x. Thus we have proved that
\[\text{for all } x \in B(a,\rho), a \sim x \text{ in } B(a,\rho) \quad (1) \]
Now suppose that x and $y \in B(a,\rho)$. Then (1) implies that $a \sim x$ and $a \sim y$ in $B(a,\rho)$.
Therefore, Theorem 11.4 implies that $x \sim y$ and $a \sim y$ in $B(a,\rho)$.

Therefore, the formula in 11.14 describes a line segment. We use the
constructed in the proof of Lemma 11.11 is the line segment from a to x.

11.12 In \mathbb{E}_2 and \mathbb{E}_3 the arc associated with the path f
constructed in the proof of Lemma 11.11 is the line segment from a to x.

11.13 Theorem
Suppose that A is an open connected subset of \mathbb{E}_n. Then A is path-connected.
Proof Since any empty set is path-connected we can assume that $A \neq \emptyset$. We choose $a \in A$ and then let
\[U = \{ x \in A \mid x \sim a \text{ in } A \} \]
and
\[V = A \setminus U. \]
Then
\[U \cup V = A \text{ and } U \cap V = \emptyset. \quad (1) \]
Suppose that $u \in U$. Since $u \in U \subseteq A$ and A is open, there
exists $\rho > 0$ such that $B(u,\rho) \subseteq A$. Let $x \in B(u,\rho)$. By Lemma 11.11, $x \sim u$ (in A). Since $u \in U$, $u \sim a$. Therefore, since \sim is an equivalence relation, $x \sim a$, that is, $x \in U$. Therefore $B(u,\rho) \subseteq U$. Therefore
\[U \text{ is open} \quad (2) \]
Suppose that $v \in V$, that is, that $v \not\sim a$.
Since $v \in V \subseteq A$ and A is open, there exists $\rho > 0$ such that $B(v,\rho) \subseteq A$.
Let $x \in B(v,\rho)$. By Lemma 11.11, $x \sim v$. Suppose that \[x \sim a \quad (3) \]
Then, since \sim is an equivalence relation, $v \sim a$, that is, $v \in U$.
But $v \not\in U$. Therefore (3) is false, that is, $x \in V$. Therefore $B(v,\rho) \subseteq V$. Therefore
\[V \text{ is open} \quad (4) \]
Since A is connected, statements (1), (2), and (4) imply that
either $U = \emptyset$ or $V = \emptyset$. But, since $a \sim a$, $a \in U$. Therefore $U \neq \emptyset$ and thus $V = \emptyset$. Therefore
\[\text{for all } x \in A, x \sim a \quad (5) \]
Since \sim is an equivalence relation, it is easy to see that (5)
implies that, for all x and $y \in A, x \sim y$. Therefore A is
path-connected. \[\square \]

11.14 Suppose that u and $v \in \mathbb{E}_n$ where $u \neq v$. Then the set
\[\{(1-t)u + tv \mid t \in [0,1]\} \]
is the line-segment from u to v. Notice that
\[(1-t)u + tv = u + t(v - u). \]

We denote the line segment from u to v by $[u,v]$.
More generally, suppose that α and $\beta \in \mathbb{R}$ where $\alpha < \beta$. Then
it is easy to show that
\[[u,v] = \left\{ \frac{1}{\beta - \alpha}[(\beta - t)u + (t - \alpha)v] \mid t \in [\alpha, \beta] \right\}. \]

11.15 In a course on vector-geometry in \mathbb{R}^2 or \mathbb{R}^3 we prove
that the formula in 11.14 describes a line segment. We use the
formula to define a line-segment in \mathbb{R}^n when $n \geq 4$.

11.16 Suppose that $f : [\alpha, \beta] \to \mathbb{E}_n$ is such that, for all $t \in [\alpha, \beta],$
\[f(t) = \frac{1}{\beta - \alpha}[(\beta - t)f(\alpha) + (t - \alpha)f(\beta)]. \]
Then
\[f[\alpha, \beta] = [f(\alpha), f(\beta)] \]
and we say that f is linear on $[\alpha, \beta]$.

11.17 Definition
A function $f : [0,1] \to \mathbb{E}_n$ is said to be a polygonal path in \mathbb{E}_n
if and only if

(i) f is continuous on $[0,1]$;

(ii) there exist $0 = x_0 < x_1 < \cdots < x_k = 1$ such that, for all $p = 1, 2, \ldots, k$, f is linear on $[x_{p-1}, x_p]$.

11.18 If $f : [0,1] \to \mathbb{E}_n$ is a polygonal path then $f[0,1]$ is the
union of a finite sequence of line segments,
\[[u_0, u_1] \cup [u_1, u_2] \cup \cdots \cup [u_{n-1}, u_n], \]
where $u_p = f(x_p)$.

11.100

11.101
11.19 Definition
A subset \(A \) of \(\mathbb{E}^n \) is said to be polygonally-connected if and only if, for all \(x, y \in A \), there is a polygonal path in \(A \) from \(x \) to \(y \).

11.20 Clearly, if \(A \) is polygonally-connected then it is path-connected. Therefore Theorem 11.10 implies that if \(A \) is polygonally-connected then it is connected.

11.21 Theorem 11.13 is still true and its proof, as given above is still valid if “path-connected” is replaced by “polygonally-connected”. Therefore every open connected subset of \(\mathbb{E}^n \) is polygonally-connected.

Therefore if \(A \) is an open subset of \(\mathbb{E}^n \) then
\[A \text{ is connected if and only if } A \text{ is path-connected if and only if } A \text{ is polygonally-connected.} \]

11.22 Example
Suppose that
\[A = \left\{ (x, y) \in \mathbb{E}^2 \mid \| (x, y) - (0, 4) \| \leq 4, \| (x, y) - (0, 2) \| \geq 2, 0 \leq y \leq 2 \right\} \]

Since every open ball centred at \(0 = (0, 0) \) contains points in \(C \), \(0 \in B \) is a boundary point of \(C \) and therefore \(A \) is connected.

For all \(\delta > 0 \) – no matter how small – there exists \(0 < t < \delta \) such that \(\sin(1/t) \) does not belong to the open ball of radius 0.5 centred at \(0 \). This implies that there is no path in \(A \) from \((1, \sin(1)) \) to \(0 \). Therefore \(A \) is not path-connected.

Notice that \(A \) is a closed subset of \(\mathbb{E}^2 \).