## MATH30010: Field Theory Homework 1: Solutions

1. Prove the uniqueness of multiplicative inverses in any field $F$; i.e., let $a \in F$ and let $b, c \in F$ satisfy

$$
a \cdot b=a \cdot c=1 .
$$

Using the field axioms, show that $b=c$.
Solution: We have $c=1 \cdot c=(b \cdot a) \cdot c=b \cdot(a \cdot c)=b \cdot 1=b$.
2. Let $F$ be a field. Using the field axioms, prove that $0 \cdot a=0$ for every $a \in F$.
Solution: We have $0=0+0$ and hence

$$
a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0
$$

Thus

$$
\begin{aligned}
0 & =a \cdot 0+(-a \cdot 0) \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) \\
& =a \cdot 0+0 \\
& =a \cdot 0 .
\end{aligned}
$$

3. Let $F$ be any field.
(a) If $a, b, c \in F$ with $b, c \neq 0$, show that

$$
\frac{a}{b}=\frac{a c}{b c} .
$$

(b) If $a, b, c, d \in F$ with $b, d \neq 0$ show that

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

## Solution:

(a) First observe that for any $x, y \in F,(x y)^{-1}=y^{-1} x^{-1}$ since

$$
(x y)\left(y^{-1} x^{-1}\right)=x\left(y \cdot y^{-1}\right) x^{-1}=x \cdot 1 \cdot x^{-1}=x \cdot x^{-1}=1
$$

Thus

$$
\frac{a c}{b c}=(a c)(b c)^{-1}=(a c)\left(c^{-1} b^{-1}\right)=a\left(c \cdot c^{-1}\right) b^{-1}=a b^{-1}=\frac{a}{b} .
$$

(b) Recall from class that if $x, y z \in F$ and $z \neq 0$, then

$$
\frac{x}{z}+\frac{y}{z}=\frac{x+y}{z}
$$

We have

$$
\begin{aligned}
\frac{a}{b}+\frac{c}{d} & =\frac{a d}{b d}+\frac{b c}{b d}(\text { using }(\mathrm{a})) \\
& =\frac{a d+b c}{b d}
\end{aligned}
$$

4. Let $F$ be a field and let $a, b \in F$. Suppose that $a b=0$. Prove that either $a=0$ or $b=0$ (possibly both).
Solution: Suppose that $a b=0$. If $a=0$ we're done. The other possibility is that $a \neq 0$, and in this case we must show that this forces $b=0$ :
Now $a \neq 0 \Longrightarrow a^{-1}$ exists. Thus, multiplying both sides of $a b=0$ by $a^{-1}$ give $a^{-1} a b=a^{-1} \cdot 0=0$ (by problem 2). But $a^{-1} a b=1 \cdot b=b$. So $b=0$ and we're done.
5. Let $F$ be a field with exactly 3 elements. $0 \neq 1$ are necessarily two of the elements. Denote the third by $a$. Using the field axioms, prove that we must have

$$
a+1=0, \quad 1+1=a \text { and } a^{2}=a+a=1
$$

Solution: $a+1$ is equal to either 0,1 or $a$. We eliminate the last two possibilities, thus proving the first:
We can't have $a+1=1$, for adding -1 to both sides gives $a=0$, and we have assumed 0,1 and $a$ are distinct.
Similarly, we can't have $a+1=a$, since adding $-a$ to both sides would imply $1=0$, which is impossible.
So we can conclude that $a+1=1+a=0$, and thus $a=-1$ and $1=-a$.
Next we can eliminate the possibilities $1+1=0$ (which implies $1=$ $-1=a)$ and $1+1=1($ which implies $1=0)$ to deduce that $1+1=a$. Thus $a=2=-1$ in our field.
Finally, in view of the above, we have $a^{2}=2 a=2 \cdot(-1)=-2=$ $-a=1$.
6. Let $F$ be the set of all $2 \times 2$ matrices of the form

$$
\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

where $a, b \in \mathbb{R}$.
(a) If $X, Y \in F$, show that $X+Y \in F$ (where + denotes matrix addition).
(b) If $X, Y \in F$, show that $X \cdot Y \in F$.
(c) Is $F$ a field? If so, prove it. If not, determine which of the nine field axioms fail to hold for $(F,+, \cdot)$.
[Note: You may assume, without proving it, that matrix addition and multiplication are associative.]

## Solution:

(a) Let

$$
X=\left[\begin{array}{cc}
x & -y \\
y & x
\end{array}\right], Y=\left[\begin{array}{cc}
z & -w \\
w & z
\end{array}\right] \in F .
$$

Then
$X+Y=\left[\begin{array}{cc}x+z & -y-w \\ y+w & x+z\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ with $a=x+z, b=y+w$.
So $X+Y \in F$.
(b) Again, let

$$
X=\left[\begin{array}{cc}
x & -y \\
y & x
\end{array}\right], Y=\left[\begin{array}{cc}
z & -w \\
w & z
\end{array}\right] \in F
$$

Then

$$
X \cdot Y=\left[\begin{array}{cc}
x z-y w & -x w-y z \\
y z+x w & x z-y w
\end{array}\right]=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \text { with } a=x z-y w, b=x w+y z .
$$

so that $X \cdot Y \in F$. Observe also that $X \cdot Y=Y \cdot X$.
(c) $(F,+, \cdot)$ is a field:

The addition is commutative and associative since this is in general true of matrix addition. (Axioms (1) and (2)).
The Zero matrix belongs to $F$ (take $a=b=0$ ) and is an additive identity (Axiom (3)).
If $X \in F$, then $-X \in F$; just replace $a$ by $-a$ and $b$ by $-b$ (Axiom (4)).
The multiplication in $F$ is commutative, as observed above (Axiom (5)).
The multiplication is associative, since this is in general true for matrix multiplication (Axiom (6)).
The $2 \times 2$ identity matrix $I$ belongs to $F$; take $a=1, b=0$ (Axiom (7)).

Now let

$$
0 \neq X=\left[\begin{array}{cc}
x & -y \\
y & x
\end{array}\right] \in F
$$

Since $X \neq 0$, not both of $x, y$ are 0 and thus $\operatorname{det}(X)=x^{2}+y^{2}>0$. Hence

$$
X^{-1}=\frac{1}{x^{2}+y^{2}}\left[\begin{array}{cc}
x & y \\
-y & x
\end{array}\right]=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

with

$$
a=\frac{x}{x^{2}+y^{2}}, b=\frac{-y}{x^{2}+y^{2}} .
$$

Thus $X^{-1} \in F$ and axiom (8) holds.
Finally, since matrix multiplication generally distributes over matrix addition, axiom (9) also holds.
7. Show that 5 is a fourth power in the field $\mathbb{F}_{11}$.

Solution: $2^{4}=5$ in $\mathbb{F}_{11}$.
8. Find all roots of the polynomial $x^{3}-6$ in the field $\mathbb{F}_{7}$.

Solution: In $\mathbb{F}_{7}$, we have $3^{3}=27=6,5^{3}=(-2)^{3}=-8=6$ and $6^{3}=(-1)^{3}=-1=6$, while $0^{3}=0,1^{3}=1,2^{3}=14^{3}=\left(2^{3}\right)^{2}=1$. So 3,5 and 6 are the roots of $x^{3}-6$ in $\mathbb{F}_{7}$.
9. Find all roots of the polynomial $x^{3}+x+1=0$ in the field $\mathbb{F}_{9}:=\mathbb{F}_{3}(i)$. Solution: Observe that for all $a \in \mathbb{F}_{3}$ we have $a^{3}=a$. Suppose that $a+b i \in \mathbb{F}_{3}(i)$. Then

$$
(a+b i)^{3}=a^{3}+3 a^{2} b i-3 a b^{2}-b^{3} i=a-b i
$$

(since $a^{3}=a, b^{3}=b$ and $3=0$ ).
Thus, if $x=a+b i$, then $x^{3}+x+1=a-b i+a+b i+1=2 a+1$. So $x^{3}+x+1=0$ if and only if $2 a+1=0$ in $\mathbb{F}_{3}$. Solving this for $a$ gives $a=-1 / 2=-2=1$. Thus the three roots are $x=1, x=1+i$ and $x=1+2 i$.

