MATH30010: Field Theory
Homework 1: Solutions

. Prove the uniqueness of multiplicative inverses in any field F’; i.e., let
a € F' and let b, c € F satisfy

Using the field axioms, show that b = c.

Solution: We have c=1-c¢=(b-a)-c=b-(a-¢c)=0b-1=0.

. Let I be a field. Using the field axioms, prove that 0-a = 0 for every
a € F.

Solution: We have 0 = 0 4+ 0 and hence

a-0=a-(04+0)=a-0+a-0.
Thus
0 = a-0+(—a-0)
= (@a-0+a-0)+(—a-0)
= a-0+(a-0+(—a-0))

= a-0+0
= a-0.

. Let F' be any field.
(a) If a,b,c € F with b, ¢ # 0, show that

a_ac
b be
(b) If a,b,c,d € F with b,d # 0 show that

¢ ad++be
d  bd

>4
b

Solution:

1

(a) First observe that for any z,y € F, (zy)~! =y~ 'z~ ! since

)y e ) =aly-y N =210 =0 a7 = 1
Thus

ac

e = (ac)(be) ™t = (ac)(cov ) =alc-c b =ab ! =



(b) Recall from class that if z,yz € F and z # 0, then

rT Yy T+y
2z oz
We have
%+§ = Z—Z—I—Z—;(using (a))
~ad+bc
o bd

4. Let F be a field and let a,b € F. Suppose that ab = 0. Prove that
either a = 0 or b = 0 (possibly both).

Solution: Suppose that ab = 0. If a = 0 we’re done. The other
possibility is that a # 0, and in this case we must show that this
forces b = 0:

Now a # 0 = a~! exists. Thus, multiplying both sides of ab = 0 by
a! give a~tab = a7+ 0 = 0 (by problem 2). But a~tab=1-b=b.
So b =0 and we’re done.

5. Let F be a field with exactly 3 elements. 0 # 1 are necessarily two
of the elements. Denote the third by a. Using the field axioms, prove
that we must have

a+1=0, l+4l=aanda*>=a+a=1.

Solution: a + 1 is equal to either 0,1 or a. We eliminate the last two
possibilities, thus proving the first:

We can’t have a+1 = 1, for adding —1 to both sides gives a = 0, and
we have assumed 0, 1 and a are distinct.

Similarly, we can’t have a + 1 = a, since adding —a to both sides
would imply 1 = 0, which is impossible.

So we can conclude that a+1 =1+ a = 0, and thus a = —1 and
1= —a.

Next we can eliminate the possibilities 1 4+ 1 = 0 (which implies 1 =
—1 =a)and 141 = 1 (which implies 1 = 0) to deduce that 1+1 = a.
Thus a = 2 = —1 in our field.

Finally, in view of the above, we have a®> = 2a = 2+ (=1) = -2 =
—a=1.

6. Let F be the set of all 2 x 2 matrices of the form

G

where a,b € R.



(a) If X|Y € F, show that X +Y € F (where + denotes matrix
addition).

(b) If X,Y € F, show that X - Y € F.

(c) Is F a field? If so, prove it. If not, determine which of the nine
field axioms fail to hold for (F, +,-).

[Note: You may assume, without proving it, that matrix addition
and multiplication are associative.]

Solution:
(a) Let )
X:[x Y ,Y:[Z _w}eF
y o | z
Then
X+Y:[yxii) _xy;zw :{Z b] with a = 2+2, b = y+w.
So X +Y eF.

(b) Again, let

Then

o Tz —Yyw —IrwW — Yz B a —b . B - -
XY—[yz—i—xw Tz —Yyw }_|:b a:|W1tha—l‘Z yw7b—l’w—|—yz,

so that X - Y € F. Observe also that X - Y =Y - X.

(c) (F,+,-) is a field:
The addition is commutative and associative since this is in gen-
eral true of matrix addition. (Axioms (1) and (2)).
The Zero matrix belongs to F' (take a = b = 0) and is an additive
identity (Axiom (3)).
If X € F, then —X € F; just replace a by —a and b by —b
(Axiom (4)).
The multiplication in F' is commutative, as observed above (Ax-
iom (5)).
The multiplication is associative, since this is in general true for
matrix multiplication (Axiom (6)).

The 2 x 2 identity matrix I belongs to F'; take a = 1,b = 0
(Axiom (7)).



Now let
_| T Y
0#X = [ y oz } eF
Since X # 0, not both of z, y are 0 and thus det(X) = 22+y* > 0.

Hence ) ;
1 T y| |a —
S A R P

T Y
22 4 y?’ _x2+y2'
Thus X! € F and axiom (8) holds.

Finally, since matrix multiplication generally distributes over ma-
trix addition, axiom (9) also holds.

with

7. Show that 5 is a fourth power in the field F;.

Solution: 2* = 5 in Fy;.

8. Find all roots of the polynomial 23 — 6 in the field F;.

Solution: In F7, we have 3% = 27 = 6, 5° = (-2)? = —8 = 6 and
63 =(—1)=—-1=6,while0®*=0,13=1,23=143= (23)2=1. So
3, 5 and 6 are the roots of 2® — 6 in F5.

9. Find all roots of the polynomial 2®+2+1 = 0 in the field Fg := F3(4).
Solution: Observe that for all a € F3 we have a® = a. Suppose that
a+ bi € F3(i). Then

(a+ bi)* = a® + 3a*bi — 3ab® — b*i = a — bi

(since a® = a, b® = b and 3 = 0).

Thus, if v =a+bi, then 2+ +1=a—bi+a+bi+1=2a+1. So
2>+ 2+ 1=0if and only if 2a +1 = 0 in F3. Solving this for a gives
a =—1/2 = -2 = 1. Thus the three roots are x = 1, x = 1 + ¢ and
r =1+ 2.



