MATH30010: Field Theory Homework 1: Solutions

1. Prove the uniqueness of multiplicative inverses in any field F; i.e., let $a \in F$ and let $b, c \in F$ satisfy

$$a \cdot b = a \cdot c = 1.$$

Using the field axioms, show that b = c.

Solution: We have $c = 1 \cdot c = (b \cdot a) \cdot c = b \cdot (a \cdot c) = b \cdot 1 = b$.

2. Let F be a field. Using the field axioms, prove that $0 \cdot a = 0$ for every $a \in F$.

Solution: We have 0 = 0 + 0 and hence

$$a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0.$$

Thus

$$0 = a \cdot 0 + (-a \cdot 0)$$

= $(a \cdot 0 + a \cdot 0) + (-a \cdot 0)$
= $a \cdot 0 + (a \cdot 0 + (-a \cdot 0))$
= $a \cdot 0 + 0$
= $a \cdot 0$.

3. Let F be any field.

(a) If $a, b, c \in F$ with $b, c \neq 0$, show that

$$\frac{a}{b} = \frac{ac}{bc}.$$

(b) If $a, b, c, d \in F$ with $b, d \neq 0$ show that

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

Solution:

(a) First observe that for any $x, y \in F$, $(xy)^{-1} = y^{-1}x^{-1}$ since

$$(xy)(y^{-1}x^{-1}) = x(y \cdot y^{-1})x^{-1} = x \cdot 1 \cdot x^{-1} = x \cdot x^{-1} = 1.$$

Thus

$$\frac{ac}{bc} = (ac)(bc)^{-1} = (ac)(c^{-1}b^{-1}) = a(c \cdot c^{-1})b^{-1} = ab^{-1} = \frac{a}{b}.$$

(b) Recall from class that if $x, yz \in F$ and $z \neq 0$, then

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z}$$

We have

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} \text{ (using (a))}$$
$$= \frac{ad + bc}{bd}.$$

4. Let F be a field and let $a, b \in F$. Suppose that ab = 0. Prove that either a = 0 or b = 0 (possibly both).

Solution: Suppose that ab = 0. If a = 0 we're done. The other possibility is that $a \neq 0$, and in this case we must show that this forces b = 0:

Now $a \neq 0 \implies a^{-1}$ exists. Thus, multiplying both sides of ab = 0 by a^{-1} give $a^{-1}ab = a^{-1} \cdot 0 = 0$ (by problem 2). But $a^{-1}ab = 1 \cdot b = b$. So b = 0 and we're done.

5. Let F be a field with exactly 3 elements. $0 \neq 1$ are necessarily two of the elements. Denote the third by a. Using the field axioms, prove that we must have

$$a + 1 = 0$$
, $1 + 1 = a$ and $a^2 = a + a = 1$.

Solution: a + 1 is equal to either 0, 1 or a. We eliminate the last two possibilities, thus proving the first:

We can't have a + 1 = 1, for adding -1 to both sides gives a = 0, and we have assumed 0, 1 and a are distinct.

Similarly, we can't have a + 1 = a, since adding -a to both sides would imply 1 = 0, which is impossible.

So we can conclude that a + 1 = 1 + a = 0, and thus a = -1 and 1 = -a.

Next we can eliminate the possibilities 1 + 1 = 0 (which implies 1 = -1 = a) and 1 + 1 = 1 (which implies 1 = 0) to deduce that 1 + 1 = a. Thus a = 2 = -1 in our field.

Finally, in view of the above, we have $a^2 = 2a = 2 \cdot (-1) = -2 = -a = 1$.

6. Let F be the set of all 2×2 matrices of the form

$$\left[\begin{array}{rr}a & -b\\b & a\end{array}\right]$$

where $a, b \in \mathbb{R}$.

- (a) If $X, Y \in F$, show that $X + Y \in F$ (where + denotes matrix addition).
- (b) If $X, Y \in F$, show that $X \cdot Y \in F$.
- (c) Is F a field? If so, prove it. If not, determine which of the nine field axioms fail to hold for $(F, +, \cdot)$.

[Note: You may assume, without proving it, that matrix addition and multiplication are associative.]

Solution:

(a) Let

$$X = \begin{bmatrix} x & -y \\ y & x \end{bmatrix}, Y = \begin{bmatrix} z & -w \\ w & z \end{bmatrix} \in F.$$

Then

$$X+Y = \begin{bmatrix} x+z & -y-w \\ y+w & x+z \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \text{ with } a = x+z, \ b = y+w.$$

So $X + Y \in F$.

(b) Again, let

$$X = \left[\begin{array}{cc} x & -y \\ y & x \end{array} \right], Y = \left[\begin{array}{cc} z & -w \\ w & z \end{array} \right] \in F.$$

Then

$$X \cdot Y = \begin{bmatrix} xz - yw & -xw - yz \\ yz + xw & xz - yw \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \text{ with } a = xz - yw, \ b = xw + yz.$$

so that $X \cdot Y \in F$. Observe also that $X \cdot Y = Y \cdot X$.

(c) $(F, +, \cdot)$ is a field:

The addition is commutative and associative since this is in general true of matrix addition. (Axioms (1) and (2)).

The Zero matrix belongs to F (take a = b = 0) and is an additive identity (Axiom (3)).

If $X \in F$, then $-X \in F$; just replace a by -a and b by -b (Axiom (4)).

The multiplication in F is commutative, as observed above (Axiom (5)).

The multiplication is associative, since this is in general true for matrix multiplication (Axiom (6)).

The 2×2 identity matrix I belongs to F; take a = 1, b = 0 (Axiom (7)).

Now let

$$0 \neq X = \left[\begin{array}{cc} x & -y \\ y & x \end{array} \right] \in F$$

Since $X \neq 0$, not both of x, y are 0 and thus $det(X) = x^2 + y^2 > 0$. Hence

$$X^{-1} = \frac{1}{x^2 + y^2} \begin{bmatrix} x & y \\ -y & x \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

with

$$a = \frac{x}{x^2 + y^2}, b = \frac{-y}{x^2 + y^2}.$$

Thus $X^{-1} \in F$ and axiom (8) holds.

Finally, since matrix multiplication generally distributes over matrix addition, axiom (9) also holds.

- 7. Show that 5 is a fourth power in the field \mathbb{F}_{11} . Solution: $2^4 = 5$ in \mathbb{F}_{11} .
- 8. Find all roots of the polynomial $x^3 6$ in the field \mathbb{F}_7 .

Solution: In \mathbb{F}_7 , we have $3^3 = 27 = 6$, $5^3 = (-2)^3 = -8 = 6$ and $6^3 = (-1)^3 = -1 = 6$, while $0^3 = 0$, $1^3 = 1$, $2^3 = 1$, $4^3 = (2^3)^2 = 1$. So 3, 5 and 6 are the roots of $x^3 - 6$ in \mathbb{F}_7 .

9. Find *all* roots of the polynomial $x^3 + x + 1 = 0$ in the field $\mathbb{F}_9 := \mathbb{F}_3(i)$. Solution: Observe that for all $a \in \mathbb{F}_3$ we have $a^3 = a$. Suppose that $a + bi \in \mathbb{F}_3(i)$. Then

$$(a+bi)^3 = a^3 + 3a^2bi - 3ab^2 - b^3i = a - bi$$

(since $a^3 = a, b^3 = b$ and 3 = 0).

Thus, if x = a + bi, then $x^3 + x + 1 = a - bi + a + bi + 1 = 2a + 1$. So $x^3 + x + 1 = 0$ if and only if 2a + 1 = 0 in \mathbb{F}_3 . Solving this for a gives a = -1/2 = -2 = 1. Thus the three roots are x = 1, x = 1 + i and x = 1 + 2i.