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Chapter 5:
Fermat’s ‘Little’ Theorem

1. Cancellation in arithmetic modulo m.

Recall that, in school algebra, if a is a nonzero integer and if ar = as then
we deduce that r = s (we ‘cancel’ the as on both sides). The proof of this
law is: divide both sides by a, or equivalently, multiply both sides by (the
rational number) 1/a.

In arithmetic modulo m this argument does not work: even if a 6≡ 0 we
cannot generally ‘divide by a’.

Example 1.1. a = 10 6≡ 0 (mod 12). We have 10 · 5 ≡ 2 ≡ 10 · 11
(mod 12) but 5 6≡ 11 (mod 12). So we cannot divide by 10, or ‘cancel’ 10,
in this congruence.

However, if (a,m) = 1, we can essentially ‘divide by a’ in modulo m arith-
metic. (Observe that (10, 12) = 2.)

Recall that if m ≥ 1 and if (a,m) = 1 then the congruence ax ≡ 1 (mod m)
is always solvable. (In practice, we can use Euclid’s algorithm to find a
solution b. Then the general solution is the congruence class of b modulo
m; i.e. the set {b+mt | t ∈ Z}.)
Lemma 1.2 (Cancellation in congruences). Suppose that (a,m) = 1 and
ar ≡ as (mod m). Then r ≡ s (mod m).

Proof. Since (a,m) = 1 there exists b ∈ Z satisfying ab ≡ 1 (mod m).
(The point, as we shall see, is that such a b plays the role of 1/a or a−1 in
arithmetic modulo m.)

Now suppose that ar ≡ as (mod m). Then b(ar) ≡ b(as) (mod m). But
b(ar) = (ab) · r ≡ 1 · r ≡ r (mod m). Similarly b(as) ≡ s (mod m). Thus
r ≡ s (mod m). �

2. The order of a modulo m

We have seen that it is often useful, when calculating modulo m with large
powers of a, to find some n ≥ 1 such that an ≡ 1 (mod m) – i.e. to find a
solution b of ax ≡ 1 (mod m) which is itself a power of a.

Can we always do this?

Proposition 2.1. Suppose that (a,m) = 1. Then there exists an integer n
satisfying an ≡ 1 (mod m) and 1 ≤ n ≤ m.
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Proof. Consider the list of integers a0, a1, . . . , am−1, am. There are m + 1
integers in this list and each has remainder in the set {0, . . . ,m− 1}. Since
there are only m possible remainders, some two of these m + 1 numbers
must have the same remainder on division by m.

Thus there exists r, s with 0 ≤ r < s ≤ m such that ar and as have the
same remainder on division by m; i.e.

ar ≡ as (mod m).

Let n = s− r. So s = r + n. Therefore

ar ≡ ar · an (mod m).

Since (ar,m) = 1, we can ‘cancel’ ar on both sides, by Lemma 1.2. Thus

an ≡ 1 (mod m).

�

Definition 2.2. Suppose that (a,m) = 1. The order of a modulo m is the
smallest positive integer d with the property that ad ≡ 1 (mod m).

Example 2.3. The order of 3 modulo 80 is 4 since 34 = 81 ≡ 1 (mod 80)
but 31, 32, 33 6≡ 1 (mod 80). Here is a table of powers of 3 modulo 80:

n R80(3
n)

0 1
1 3
2 9
3 27
4 1
5 3
6 9
7 27
8 1
9 3
...

...

Notice that the numbers on the right repeat themselves in cycles of length 4.
This is no coincidence.

Theorem 2.4. Suppose that (a,m) = 1 and let d ≥ 1 be the order of a
modulo m. Then an ≡ 1 (mod m) if and only if d|n.

Proof. Recall that ad ≡ 1 (mod m) and ar 6≡ 1 (mod m) if 1 ≤ r < d.

First suppose that d|n. Then n = dt for some integer t and hence

an = (ad)t ≡ 1t ≡ 1 (mod m).
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Conversely, suppose that an ≡ 1 (mod m). We must prove that d|n. By
the division algorithm, n = dt + r for some t, r ∈ Z with 0 ≤ r < d. We
must prove that r = 0:

Now

an = (ad)t · ar ≡ 1 · ar ≡ ar (mod m)

and hence

ar ≡ 1 (mod m).

Since r < d this forces r = 0 by the minimality of d. �

Corollary 2.5. Suppose that (a,m) = 1 and let d ≥ 1 be the order of a
modulo m. Then for any integers r and s

ar ≡ as (mod m) ⇐⇒ r ≡ s (mod d).

Proof. We will assume, without loss of generality, that r ≤ s.

Suppose that s ≡ r (mod d). Then s = r + dt for some t ≥ 0. So

as = ar · (ad)t ≡ ar · 1 ≡ ar (mod m).

Conversely suppose that ar ≡ as (mod m). We must prove that d|s− r.

Let n = s − r. Then by Lemma 1.2 from ar ≡ ar · an (mod m) we deduce
1 ≡ an (mod m) and hence that d|n by Theorem 2.4. �

Remark 2.6. Note that the corollary says that the powers of a repeat modulo
m in cycles of length d. This is precisely what we observed of the powers of
3 modulo 80 (where d = 4 in that case).

Example 2.7. What is the order of 2 modulo 33?

Solution: Let d be the order of 2 modulo 33.

We have 25 = 32 ≡ −1 (mod 33). Thus 210 ≡ (−1)2 ≡ 1 (mod 33).

It follows from Theorem 2.4 that d|10. Thus d = 1, 2, 5 or 10. But 2, 22, 25 6≡
1 (mod 33). Thus d = 10.

It follows, from Theorem 2.4 again, that

2n ≡ 1 (mod 33) ⇐⇒ 10|n.

Example 2.8. The order of 7 modulo 10 is 4. (Check this!)

The powers of 7 modulo 10 repeat in cycles of length 4:
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n R10(7
n)

0 1
1 7
2 9
3 3
4 1
5 7
6 9
7 3
8 1
9 7
...

...

Q: What is the last digit of 783?

A: Since 83 ≡ 3 (mod 4), 783 ≡ 73 ≡ 3 (mod 10).

3. Fermat’s Little Theorem

Remark 3.1. Recall (Homework 5, problem 9 (b)) that if p is a prime
number then

(
p
m

)
≡ 0 (mod p) if 1 ≤ m ≤ p− 1.

Proposition 3.2. Let p be a prime number. Then np ≡ n (mod p) for all
n ≥ 1.

Proof. We’ll prove this by induction on n. The case n = 1 is clear since
1p = 1.

Suppose the result has been proved for some n ≥ 1. Then

(n+ 1)p = np +

(
p

1

)
np−1 + · · ·+

(
p

m

)
nm + · · ·+

(
p

p− 1

)
n+ 1

by the Binomial Theorem

≡ np + 0 + · · ·+ 0 + 1 (mod p) (see remark above)

≡ n+ 1 (mod p) by ind. hyp..

�

Theorem 3.3 (Fermat’s Little Theorem). Let p be a prime and a any
integer not divisible by p. Then

ap−1 ≡ 1 (mod p)

Proof. Replacing a, if necessary, by a positive number which is congruent
to it modulo p, we can assume that a ≥ 1. By Proposition 3.2, we have
a · ap−1 ≡ a · 1 (mod p). Since (a, p) = 1, we deduce that ap−1 ≡ 1 (mod p)
by Lemma 1.2. �
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Combining Fermat’s Little Theorem with Theorem 2.4 we deduce:

Corollary 3.4. Suppose that p is prime and that p 6 |a. Let d be the order
of a modulo p. Then d|p− 1; i.e. p ≡ 1 (mod d).

Example 3.5. Find the order of 10 modulo 29.

Solution: Let d be the order of 10 modulo 29.

29 is prime, so d|29− 1 = 28. Thus d = 1, 2, 4, 7, 14 or 28.

We eliminate all but the last:

102 = 4 · 25 ≡ 4 · (−4) ≡ −16 (mod 29) : d 6= 2.

103 ≡ 10 · −16 ≡ −5 · 32 ≡ −5 · 3 ≡ −15 (mod 29).

104 ≡ 162 ≡ 32 · 8 ≡ 3 · 8 ≡ 24 ≡ −5 (mod 29) : d 6= 4

107 = 104 · 103 ≡ −5 · −15 ≡ 25 · 3 ≡ −4 · 3 ≡ −12 (mod 29) : d 6= 7.

1014 ≡ 122 ≡ 36 · 4 ≡ 7 · 4 ≡ 28 ≡ −1 (mod 29) : d 6= 14.

Thus d = 28.

Thus
29|1028 − 1 = 99 · · · 99︸ ︷︷ ︸

28

but
29 6 | 99 · · · 99︸ ︷︷ ︸

n

if n < 28.

Example 3.6. Is 232 + 1 = 4294967297 prime?

Solution: If 232 + 1 is not prime, then it is divisible by a prime p <⌊√
232 + 1

⌋
= 216 = 65536.

We can use Fermat’s Little Theorem to eliminate most primes from consid-
eration, as follows:

Let p be a prime number dividing 232 + 1. Then 232 ≡ −1 (mod p) and
hence

264 ≡ (−1)2 ≡ 1 (mod p).

Let d be the order of 2 modulo p. Then d|64. Thus d = 2r for some r ≤ 6.
But if r < 6 then d|32 and hence 232 ≡ 1 (mod p), a contradiction. Thus
r = 6 and d = 64.

It follows by Corollary 3.4 that p ≡ 1 (mod 64). Thus any prime divisor
of 232 + 1 must be of the form 64n + 1 for some n ≥ 1. The first few such
primes are:

193, 449, 577, 641, . . .

We test each of these primes in turn and discover that 641|232 + 1 (in fact
232 + 1 = 641 · 6700417, both factors are primes) to see that 232 + 1 is not
prime.
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Example 3.7. Is 211 − 1 = 2047 prime?

Solution: Let p be a prime divisor of N = 211− 1. Then 211 ≡ 1 (mod p).
Thus the order of 2 modulo p is 11. So p is the form 11n+ 1. The smallest
such prime is 23 = 11 · 2 + 1. Dividing, we find 2047 = 23 · 89. So it is
composite.

Remark 3.8. Fermat’s Little Theorem fails in general if the modulus is
composite; i.e. If n is composite and if (a, n) = 1 then it is not usually the
case that an−1 ≡ 1 (mod n).

For example, take n = 9 and a = 2. Then

23 ≡ −1 (mod 9) =⇒ 26 ≡ 1 (mod 9) =⇒ 28 ≡ 22 6≡ 1 (mod 9).

There is however, an extension of Fermat’s Little Theorem, due to Euler,
which applies to composite as well as prime moduli:

There is a function φ : N → N (the ‘Euler phi-function’) with the property
that φ(p) = p− 1 when p is prime and for all m > 1 and a with (a,m) = 1
we have

aφ(m) ≡ 1 (mod m).

In fact φ(9) = 6. So Euler’s Theorem tells us that a6 ≡ 1 (mod 9) if 3 6| a.

In practice, φ can be calculated from the following two facts:

(1) If p is a prime number, then φ(pn) = pn−1(p− 1).

(2) If (n,m) = 1 then φ(nm) = φ(n) · φ(m).

For example, φ(100) = φ(4)φ(25) = (2 · (2− 1)) · (5 · (5− 1)) = 2 · 5 · 4 = 40.

Example 3.9. Testing for primality

Fermat’s Little Theorem is the basis for testing whether a number is prime
or not. If p > 2 is a prime number, Fermat’s Theorem tells us that 2p−1 ≡ 1
(mod p). It follows that if n is any odd number and if 2n−1 6≡ 1 (mod n)
then n must be composite. In this way, we can often determine that a
number is composite without finding any factors. Indeed, there are examples
of very large numbers which are known to be composite using this test, but
for which factors cannot be found with existing computational methods.

As a toy example: Suppose that we want to determine that 527 is compos-
ite without factoring. Easy (but tedious) calculations show that 240 ≡ 1
(mod 527). Since 526 = 40 · 13 + 6 this gives

2256 ≡ (240)13 · 26 ≡ 26 ≡ 64 6≡ 1 (mod 257).

So 257 is composite. (In fact 257 = 17 · 31.)
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Example 3.10. Use Fermat’s Little Theorem to prove that 385|n60 − 1 if
5, 7, 11 6 |n.

Solution: Note that 385 = 5 · 7 · 11. We wish to prove that if 5, 7, 11 6 |n
then

n60 ≡ 1 (mod 385).

Since 5, 7, 11 are pairwise relatively prime this is equivalent to showing that

n60 ≡ 1 (mod 5) and n60 ≡ 1 (mod 7) and n60 ≡ 1 (mod 11)

By Fermat’s Little Theorem, n4 ≡ 1 (mod 5), and since 4|60 it follows that
n60 ≡ 1 (mod 5).

Similarly, by Fermat’s Little Theorem, n6 ≡ 1 (mod 7), and since 6|60 it
follows that n60 ≡ 1 (mod 7).

Finally, by Fermat’s Little Theorem, n10 ≡ 1 (mod 11), and since 10|60 it
follows that n60 ≡ 1 (mod 11).

Using the same idea as in this last example we prove the following:

Lemma 3.11. Let p, q be two (distinct) odd primes. Suppose that p, q 6 |a.
Then

a
(p−1)(q−1)

2 ≡ 1 (mod pq).

Proof. Let m := (p−1)(q−1)
2

.

Since (p, q) = 1 we just need to prove that

am ≡ 1 (mod p) and am ≡ 1 (mod q).

Since q is odd, q − 1 is even and hence q−1
2
∈ Z. Thus p− 1| (p−1)(q−1)

2
= m.

But ap−1 ≡ 1 (mod p) by Fermat. Hence am ≡ 1 (mod p).

Similarly (exchanging the roles of p and q) am ≡ 1 (mod q). �


