WRF 4D-Var

The Weather Research and Forecasting model based 4-Dimensional Variational data assimilation system

Xiang-Yu Huang
National Center for Atmospheric Research, Boulder, Colorado

On leave from Danish Meteorological Institute, Copenhagen, Denmark.
The WRF 4D-Var Team

Xiang-Yu Huang, Qingnong Xiao, Wei Huang, Dale Barker, John Michalakes, John Bray, Xin Zhang, Zaizhong Ma, Yongrun Guo, Hui-Chuan Lin, Ying-Hwa Kuo

Acknowledgments. The WRF 4D-Var development has been primarily supported by the Air Force Weather Agency.
Outline

1. WRF
2. 4D-Var
3. Current status of WRF 4D-Var
4. Single ob experiments
5. Noise control
6. Typhoon (Haitang) forecasts
7. Work plan
8. Summary
WRF overview

• Eight-year, multi-agency collaboration to develop advanced community mesoscale model and data assimilation system with direct path to operations

• Current release WRFV2.1 (Next release 2.2 November 2006)
 – Two dynamical cores, numerous physics, chemistry
 – Variational Data Assimilation (3D-Var released) and Ensemble Kalman Filter (in development)

• Rapid community growth
 – More than 3,000 registered users
 – June 2005 Users Workshop: 219 participants, 117 inst., 65 countries
 – Scientific papers: real-time NWP, atmos. chemistry, data assimilation, climate, wildfires, mesoscale processes

• Operational capabilities implemented or planned
 – Air Force Weather Agency
 – National Centers for Environmental Prediction
 – BMB (Beijing), KMA (Korea), IMD (India), CWB (Taiwan), IAF (Israel), WSI (U.S.)
Observations are not enough for initializing NWP models:

- Observations have errors.
- Observations are not evenly distributed in time and/or in space.
- Many observations are indirect, e.g. radiance. (not “model variables”, e.g. p, T, u, v, q).
- …
Variational methods: 3D-Var and 4D-Var

Model state

Observations y

Forecast

Analysis

Background

(old forecast)

(initial condition for NWP)

the assimilation window

kth observation window

t_0 t_1 t_2 \cdots t_k \cdots t_K Time
4D-Var

\[J = J_b + J_o \]

\[J_b(x_0) = \frac{1}{2} \left[(x_0 - x_b)^T B^{-1} (x_0 - x_b) \right] \]

\[J_o(x_0) = \frac{1}{2} \sum_{k=1}^{K} \left[(H_k x_k - y_k)^T R_k^{-1} (H_k x_k - y_k) \right] \]

\[x_k = M \left(x_0 \right) \]
WRF 4D-Var

Black – WRF-3DVar \([B, R, U=B^{1/2}, v^n=U^{-1}(x^n-x^{n-1})]\)

Green – modification required

Blue – existing (for 4DVar)

Red – new development

\[J'_{vn} = v^n + \sum_{i=1}^{n-1} v^i + U^T S_{W,V}^T \sum_{k=1}^{K} M_k^T S_{W,V}^T H_k^T R^{-1} [H_k S_{W,V} M_k S_{W,V}] U^{-1} v^n + H_k(M_k(x^{n-1})) - y_k \]

(Huang, et.al. 2006: Preliminary results of WRF 4D-Var. WRF users’ workshop, Boulder, Colorado.)
Necessary components of 4D-Var

• H observation operator, including the tangent linear operator H and the adjoint operator H^T.

• M forecast model, including the tangent linear model M and adjoint model M^T.

• B background error covariance (N*N matrix).

• R observation error covariance which includes the representative error (K*K matrix).
Why 4D-Var?

• Use observations over a time interval, which suits most asynoptic data.
• Use a forecast model as a constraint, which ensures the dynamic balance of the analysis.
• Implicitly use flow-dependent background errors, which ensures the analysis quality for fast developing weather systems.
A short 4D-Var review

- The idea: Le Dimet and Talagrand (1986); Lewis and Derber (1985)
- Implementation examples:
 - Courtier and Talagrand (1990); a shallow water model
 - Thepaut and Courtier (1991); a multi-level primitive equation model
 - Navon, et al. (1992); the NMC global model
 - Zupanski M (1993); the Eta model
 - Zou, et al. (1995); the MM5 model
 - Sun and Crook (1998); a cloud model
 - Rabier, et al. (2000); the ECMWF model
 - Huang, et al. (2002); the HIRLAM model
 - Zupanski M, et al. (2005); the RAMS model
 - Ishikawa, et al. (2005); the JMA mesoscale model
 - Huang, et al. (2005); the WRF model
- Operation: ECMWF, Meteo France, JMA, UKMO, MSC.
- Pre-operation: HIRLAM
Current status of WRF 4D-Var

- Necessary modifications to WRF 3D-Var have been completed.
- WRF tangent-linear and adjoint models have been developed.
- WRF 4D-Var framework has been developed.
- The prototype has been put together and can run. An implementation of it has been made at AFWA in Jan 2006.
The prototype: Use separate executables, communicate through I/O
Single observation experiment

The idea behind single ob tests:
The solution of 3D-Var should be
\[x^a = x^b + BH^T[H^T+B^T]^{-1}[y - Hx^b] \]

Single observation
\[x^a - x^b = B_i \left[\sigma_b^2 + \sigma_o^2 \right]^{-1} [y_i - x_i] \]

3D-Var → 4D-Var: \(H \rightarrow HM; H^T \rightarrow M^TH^T \)
The solution of 4D-Var should be
\[x^a = x^b + BM^TH^T[H(MBM^T)H^T + R]^{-1}[y - HMx^b] \]

Single observation, solution at observation time
\[M(x^a - x^b) = (MBM^T)_i \left[\sigma_b^2 + \sigma_o^2 \right]^{-1} [y_i - x_i] \]
500mb θ increments from 3D-Var at 00h and from 4D-Var at 06h due to a 500mb T observation at 06h.
500mb θ increments at 00, 01, 02, 03, 04, 05, 06h to a 500mb T ob at 06h
500mb θ difference at 00, 01, 02, 03, 04, 05, 06h from two nonlinear runs (one from background; one from 4D-Var)
500mb θ difference at 00, 01, 02, 03, 04, 05, 06h from two nonlinear runs (one from background; one from FGAT)
Noise

MSLP (hPa) Surface pressure tendency (hPa/3h)

Noise

MSLP (hPa) $\text{Surface pressure tendency (hPa/3h)}$

$t=0$

Hans Huang: WRF 4D-Var
Seminar at UCD 5th October 2006
Sea level pressure and surface pressure tendency at +6h
Evolution of the surface pressure tendency: DPSDT
Noise level

Grid-points: 74×61×28
Resolution: 30 km
Time step: 180 s
Initial state: 3DVAR analysis at 2000.01.25.00 (the second cycle)
DFI for WRF

X.-Y. Huang,
M. Chen, J.-W. Kim, W. Wang,
T. Henderson, W. Skamarock

NCAR, BMB, KMA

Project funded by KMA and BMB
Implemented options of DFI

DFL:
- Filtering
- Forecast

DDFI:
- Backward integration
- Filtering
- Forecast

TDFI:
- Backward integration
- Filtering
- Forecast
DFL test
The KMA domain 10 km : 12UTC 04 May ~ 12UTC 11 May 2006

The mean absolute Psfc tendency (KMA 10 km Domain)
JcDF in WRF 4D-Var

Xin Zhang, University of Hawaii
Hans Huang, NCAR

\[
J = J_b + J_o + J_c
\]

\[
J_b(x_0) = \frac{1}{2} \left[(x_0 - x_b)^T B^{-1} (x_0 - x_b) \right]
\]

\[
J_o(x_0) = \frac{1}{2} \sum_{k=1}^{K} \left[(H_k x_k - y_k)^T R_k^{-1} (H_k x_k - y_k) \right]
\]

\[
J_c(x_0) = \frac{\gamma_{df}}{2} \left[(x_{N/2} - x_{DF}^{N/2})^T C^{-1} (x_{N/2} - x_{DF}^{N/2}) \right]
\]

\[
x_{DF}^{N/2} = \sum_{n=0}^{N} h_n x_n
\]
WRF 4D-Var

Black – WRF-3DVar \([\mathbf{B}, \mathbf{R}, \mathbf{U}=\mathbf{B}^{1/2}, \mathbf{v}^n=\mathbf{U}^{-1}(\mathbf{x}^n-\mathbf{x}^{n-1})] \)

Green – modification required

Blue – existing (for 4DVar)

Red – new development

\[
J'_{\mathbf{v}_n} = \mathbf{v}^n + \sum_{i=1}^{n-1} \mathbf{v}^i + \mathbf{U}^T \mathbf{S}_{\mathbf{v}-\mathbf{w}}^T \sum_{k=1}^{K} \mathbf{M}_k \mathbf{S}_{\mathbf{w}-\mathbf{v}}^T \mathbf{H}_k^T \mathbf{R}^{-1} [\mathbf{H}_k \mathbf{S}_{\mathbf{w}-\mathbf{v}} \mathbf{M}_k \mathbf{S}_{\mathbf{v}-\mathbf{w}} \mathbf{U}^{-1} \mathbf{v}^n + H_k(M_k(\mathbf{x}^{n-1})) - \mathbf{y}_k]
\]

\[
+ \mathbf{U}^T \mathbf{S}_{\mathbf{v}-\mathbf{w}}^T \sum_{i=0}^{N} \mathbf{M}_i^T h_i \gamma_{df} \mathbf{C}^{-1} \left(\sum_{i=0}^{N} (h_i \mathbf{M}_i \mathbf{S}_{\mathbf{v}-\mathbf{w}} \mathbf{U} \mathbf{v}) \right)
\]
Jb, Jo and Jc in WRF
\[\gamma = 10.0 \]
Typhoon Haitang experiments:

4 experiments, every 6 h, 00Z 16 July - 00 Z 18 July, 2005
Typhoon Haitang hit Taiwan 00Z 18 July 2005

1. FGS – forecast from the background [The background fields are 6-h WRF forecasts from National Center for Environment Prediction (NCEP) GFS analysis.]

2. AVN - forecast from the NCEP GPS analysis

3. 3DVAR – forecast from WRF 3D-Var

4. 4DVAR – forecast from WRF 4D-Var
Observations used in 4DVAR and FGAT at 0000UTC 16 July 2005

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>T</th>
<th>p</th>
<th>q</th>
<th>dZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP</td>
<td>727</td>
<td>724</td>
<td>869</td>
<td></td>
<td>697</td>
<td></td>
</tr>
<tr>
<td>TEMPsurf</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SYNOP</td>
<td>199</td>
<td>218</td>
<td>237</td>
<td>226</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>SATOB</td>
<td>3187</td>
<td>3182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIREP</td>
<td>923</td>
<td>930</td>
<td>939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PILOT</td>
<td>159</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METAR</td>
<td>167</td>
<td>191</td>
<td>216</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>SHIP</td>
<td>69</td>
<td>70</td>
<td>77</td>
<td>79</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>SATEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>511</td>
</tr>
<tr>
<td>BUOY</td>
<td>67</td>
<td>67</td>
<td>0</td>
<td>64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BOGUS</td>
<td>1200</td>
<td>1200</td>
<td>788</td>
<td>788</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

(At 0600UTC 16 July: GPS refractivity 2594, QuikScat u 2594, v 2605)
Typhoon (Haitang) forecasts
Typhoon (Haitang) forecasts

TRACK ERROR (KM)

FORECAST TIME

138.30 = POS
83.22 = AVN
92.22 = 3DREF
68.72 = 4DREF
The track error in km averaged over 48 h

48 hours forecasted typhoon track verification

- FGS
- AVN
- 3DREF
- 4DREF

KM

0 20 40 60 80 100 120 140 160 180 200

1512 1518 1600 1606 1612 1618 1700 1706 1712 1718 1800
The track error in km averaged over 48 h

<table>
<thead>
<tr>
<th>Time</th>
<th>FGS</th>
<th>AVN</th>
<th>3DREF</th>
<th>4DREF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1512</td>
<td>84</td>
<td>82</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>1518</td>
<td>82</td>
<td>130</td>
<td>71</td>
<td>85</td>
</tr>
<tr>
<td>1600</td>
<td>138</td>
<td>83</td>
<td>92</td>
<td>68</td>
</tr>
<tr>
<td>1606</td>
<td>92</td>
<td>83</td>
<td>77</td>
<td>78</td>
</tr>
<tr>
<td>1612</td>
<td>96</td>
<td>90</td>
<td>74</td>
<td>61</td>
</tr>
<tr>
<td>1618</td>
<td>95</td>
<td>67</td>
<td>101</td>
<td>96</td>
</tr>
<tr>
<td>1700</td>
<td>100</td>
<td>86</td>
<td>88</td>
<td>84</td>
</tr>
<tr>
<td>1706</td>
<td>111</td>
<td>104</td>
<td>97</td>
<td>116</td>
</tr>
<tr>
<td>1712</td>
<td>126</td>
<td>134</td>
<td>131</td>
<td>133</td>
</tr>
<tr>
<td>1718</td>
<td>144</td>
<td>126</td>
<td>126</td>
<td>127</td>
</tr>
<tr>
<td>1800</td>
<td>150</td>
<td>159</td>
<td>169</td>
<td>156</td>
</tr>
<tr>
<td>Average</td>
<td>110.7</td>
<td>104.0</td>
<td>99.9</td>
<td>97.3</td>
</tr>
</tbody>
</table>
Typhoon (Haitang) forecasts
The central pressure error in hpa averaged over 48 h

48 hours forecasted typhoon MSLP verification

- FGS
- AVN
- 3DREF
- 4DREF
The central pressure error in hpa averaged over 48 h

<table>
<thead>
<tr>
<th>Time</th>
<th>FGS</th>
<th>AVN</th>
<th>3DREF</th>
<th>4DREF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1512</td>
<td>55</td>
<td>54</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>1518</td>
<td>54</td>
<td>57</td>
<td>47</td>
<td>46</td>
</tr>
<tr>
<td>1600</td>
<td>57</td>
<td>50</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>1606</td>
<td>47</td>
<td>50</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>1612</td>
<td>43</td>
<td>46</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>1618</td>
<td>39</td>
<td>42</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>1700</td>
<td>34</td>
<td>30</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>1706</td>
<td>24</td>
<td>27</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>1712</td>
<td>21</td>
<td>23</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>1718</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>1800</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Average</td>
<td>37.0</td>
<td>37.6</td>
<td>32.6</td>
<td>31.0</td>
</tr>
</tbody>
</table>
Cost issue (current status)

• Single processor - limited grid points.

The largest domain ever tested is: 91x73x17 and 45km
(This domain is large enough for a model on 271x220x17 and 15km
- realistic tests are possible.)

• Single processor + Disk I/O = slow.

With the largest domain and an operational data set over 6h,
40 iteration take: 20 h on a Mac G5
Work plan

1. On going work:
 - Case studies.
 - Code merging.
 - Parallelization.
 - JcDF
2. Near future plan: Multi-incremental; Simple physics;
3. Long term plan: lateral boundary control (J_bdy); more physics, extensive parallel runs.
Summary

1. WRF
2. 4D-Var
3. Current status of WRF 4D-Var
4. Single ob experiments
5. Noise control
6. Typhoon (Haitang) forecasts
7. Work plan
8. Summary