Ice ages and the role of carbon in past and future climate

Andrew Fowler

University of Limerick

Snowball Earth

Energy balance model

$$\rho_a c_p d \frac{dT}{dt} = \frac{1}{4} (1-a)Q - \sigma \gamma T^4$$

Ice-albedo feedback

Bistability

Milanković

THOUSANDS OF YEARS AGO

Problems: no 100 kyr cycle no saw tooth

Sawtooth oscillations

Milanković

Input: not Milanković CO₂ driver sawtooth → 3 variable

Output: sawtooth post_Eocene cooling anthropogenic warming snowball Earth mid-Pleistocene transition

Energy balance

$$c\dot{T} = \frac{1}{4}Q_s(1-a) - \sigma e^{-\Gamma}T^4$$

thus

$$\Delta T \approx \frac{\frac{T}{4} \left[\Gamma_p \Delta p - \frac{a_I}{1-a} \Delta I \right]}{1 + \frac{T}{4} \left\{ \frac{a_T}{1-a} - \Gamma_T \right\}}$$

A (too) simple model of ice ages

oscillations

enhanced melt rate during wastage!

with Milanković

plus 'D-O' fluctuations

post-Eocene cooling

via slow background decrease in C

Henry's law

sea surface
$$p_s = \frac{[CO_2]}{K_H}$$

Carbon buffering

$$[H_2O] + CO_2 \quad \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} \quad HCO_3^- + H^+$$
$$HCO_3^- \quad \stackrel{k_2}{\underset{k_{-2}}{\rightleftharpoons}} \quad CO_3^{2-} + H^+$$

Reaction rates

carbon
$$R_1 = k_1 [CO_2] - k_{-1} [HCO_3^-] [H^+],$$

buffering $R_2 = k_2 [HCO_3^-] - k_{-2} [CO_3^{2-}] [H^+].$
biomass $r_3 = k_3 [P_B] [P] - k_{-3} [P_B]$ $R_3 = Rr_3$.
precipitation $R_4 = k_4 ([Ca^{2+}] [CO_3^{2-}] - K_{cp})^n$

Weathering

 $CaSiO_3 + 2CO_2 + H_2O \longrightarrow Ca^{2+} + 2HCO_3^- + SiO_2$

 $Ca^{2+} + 2HCO_3^- \longrightarrow CaCO_3 + CO_2 + H_2O$

overall ...

$$CaSiO_3 + CO_2 \longrightarrow CaCO_3 + SiO_2$$

essentially:

$$\begin{split} \mathbf{C} &\to \mathbf{HCO}_3^- + \frac{1}{2}\mathbf{Ca}^{2+} \\ \mathbf{Ca}^{2+} + \mathbf{HCO}_3^- & \underset{k_{-3}}{\overset{k_3}{\rightleftharpoons}} \mathbf{CaCO}_3 + \mathbf{H^+} \end{split}$$

Reactions

 $[CO_2] = -R_1 + h(p - p_s),$ $[\mathrm{CO}_{2}^{2-}] = R_{2} - R_{4},$ $[HCO_{2}^{-}] = R_{1} - R_{2} - R_{3} + A^{*}W.$ $[\dot{\mathrm{H}^{+}}] = R_1 + R_2 + R_3.$ $[Ca^{2+}] = -R_3 - R_4 + \frac{1}{2}A^*W,$ $[CaCO_3] = R_3 + R_4 - B[CaCO_3],$ $[\dot{P}] = -r_3 + \rho A^* W,$ $[\mathbf{P}_{\mathbf{B}}] = r_3 - B[\mathbf{P}_{\mathbf{B}}],$

Quasi-equilibrium, $R_1 \approx R_2 \approx 0$

Atmospheric CO₂

$$\frac{A_E}{M_a g m_{oc}} \dot{p} = v - A^* W - h(p - p_s)$$

Weathering

$$W = W_0 \left(\frac{p}{p_0}\right)^{\mu} \exp\left[\frac{T - T_0}{\Delta T_c}\right]$$

Non-dimensionalisation

p_{CO_2}	$arepsilon \dot{p}~=~1$	$1 - \Omega w - \Lambda (p - p_s),$
$[\mathrm{HCO}_3^-]$	$\eta \dot{Q}~=~2.$	$2\Lambda(p-p_s)+\Omega w,$
$[\mathrm{CO}_3^{2-}]$	$\nu \dot{S}$ = -	$-\beta u_b - u_p - \Lambda(p - p_s),$
$[CaCO_3]$	$\dot{N}~=~eta$	$Bu_b + u_p - N,$
$[\mathbf{P}]_{:}$	$\zeta \dot{P}$ = -	$-u_b + rac{\gamma \Omega w}{eta},$
Formation of CaCO ₃ $u_b = (\kappa_3 P - 1)P_B, \ u_p \approx S - \Sigma$		
Ocean surface CO₂ $p_s = \frac{Q^2}{\kappa_H S}$		
	Weather	ing $w=p^{\mu}e^{ heta}$
	Energy bala	$\theta = \lambda \ln p - \kappa I$

Non-dimensionalisation

t in kyr

Post-Eocene cooling

via increasing weathering [India] or decreased CO₂ production

Global warming $v_A \approx 70 v_P$

CO₂ equilibrates $p \approx 560$ Pa, $t \sim 300$ y CO₃²⁻ \downarrow HCO₃⁻ $\uparrow \approx$ CO₂ \uparrow (and H⁺) $t \sim 2000$ y

Plastic flow (Weertman, Ghil)

Simple ice sheet model

ature

70

moisture

Rapid melting
$$\longrightarrow$$
 lakes $\sqrt{\frac{L}{2}}\dot{L} = L[1 - 2\{1 + \alpha(\dot{L})\}\xi]$

runoff discharge $\delta \dot{v} = M^* \Xi (I, H) \alpha(v) - r(v)$ $\Xi \approx (I + k^* H)^2$

V

I,v model

\rightarrow oscillations \Rightarrow

Milanković → rapid oscillations →

Post-glacial rapid CO₂ rise: Shelf exposure? Carbonate erosion? Ocean lowering? Terrestrial biomass? Mixing layer? Thermally activated bioproduction:

$$\begin{split} \zeta \dot{P} &= -\left(Pe^{b'\theta} - 1\right) P_B + \frac{\gamma \Omega_S w}{\beta}, \\ \dot{P}_B &= \frac{\beta}{2\gamma} \left(Pe^{b'\theta} - 1\right) P_B, \\ \nu \dot{S} &= -\beta \left(Pe^{b'\theta} - 1\right) P_B - (1 - \Sigma) - S + \Omega_S w. \\ \Delta S &\approx -\frac{\beta \zeta b'}{\nu} \Delta \theta \end{split}$$

Thoughts and possibilities

Why is Greenland still glaciated?

Post-Eocene cooling due to Himalayas?

Milanković can do 40 ky cycle but not 100 ky.

Ice ages might be caused by by oscillations involving meltwater runoff

Global warming: short term response pco2 560 Pa: long term pco2 ice sheets within 5 ky, sea level up 1 m/100 y, weather??

Biomass production causes post-glacial pc02 rise

Snowball Earth ice epochs may have been due to the absence of calcifiers.