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The Pre-history of Numerical

Weather Prediction

(circa 1900)

Vilhelm Bjerknes, Max Margules and Lewis Fry Richardson
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Vilhelm Bjerknes (1862–1951)

Vilhelm Bjerknes on the quay at Bergen, painted by Rolf Groven, 1983
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Vilhelm Bjerknes (1862–1951)

• Born in March, 1862.
• Matriculated in 1880.
• Fritjøf Nansen was a fellow-student.
• Paris, 1989–90.

Studied under Poincaré.
• Bonn, 1890–92.

Worked with Heinrich Hertz.
Vilhelm Bjerknes

• Worked in Stockholm, 1983–1907.
• 1898: Circulation theorems published
• 1904: Meteorological Manifesto
• Christiania (Oslo), 1907–1912.
• Leipzig, 1913–1917.
• Bergen, 1917–1926.
• 1919: Frontal Cyclone Model.

• Oslo, 1926 — 1951. Retired 1937. Died, April 9,1951.
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Bjerknes’ 1904 Manifesto
To establish a science of meteorology, with the aim of pre-
dicting future states of the atmosphere from the present
state.
“If it is true . . . that atmospheric states develop according to physi-

cal law, then . . . the conditions for the rational solution of forecasting

problems are:
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Bjerknes’ 1904 Manifesto
To establish a science of meteorology, with the aim of pre-
dicting future states of the atmosphere from the present
state.
“If it is true . . . that atmospheric states develop according to physi-

cal law, then . . . the conditions for the rational solution of forecasting

problems are:

1. An accurate knowledge of the state of the atmosphere
at the initial time.

2. An accurate knowledge of the physical laws according to
which one state . . . develops from another.”

Step (1) is Diagnostic.
Step (2) is Prognostic.
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Graphical v. Numerical Approach
x

Bjerknes ruled out analytical solution of the mathematical
equations, due to their nonlinearity and complexity:

“For the solution of the problem in this
form, graphical or mixed graphical and
numerical methods are appropriate, which
methods must be derived either from the
partial differential equations or from the
dynamical-physical principles which are
the basis of these equations.”
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The First Reading from

The Book of Limerick
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The First Reading from

The Book of Limerick

Bill Bjerknes defined, with conviction,
The science of weather prediction:

By chart diagnosis,
And graphic prognosis,

The forecast is rendered non-fiction.
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The Impossibility of Forecasting
In 1904, Max Margules contributed a short paper for the
Festschrift published to mark the sixtieth birthday of his
former teacher, the renowned physicist Ludwig Boltzmann.

Über die Beziehung zwischen Barometerschwankungen

und Kontinuitätsgleichung. Boltzmann-Festschrift, Leipzig.

Margules considered the possibility of predicting pressure
changes by means of the continuity equation.
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Festschrift published to mark the sixtieth birthday of his
former teacher, the renowned physicist Ludwig Boltzmann.

Über die Beziehung zwischen Barometerschwankungen

und Kontinuitätsgleichung. Boltzmann-Festschrift, Leipzig.

Margules considered the possibility of predicting pressure
changes by means of the continuity equation.

He showed that, to obtain an accurate estimate of the pres-
sure tendency, the winds would have to be known to a pre-
cision quite beyond the practical limit.

He concluded that any attempt to forecast synoptic changes
by this means was doomed to failure.

A translation of Margules’ 1904 paper, together with a short introduction, has been

published as a Historical Note by Met Éireann.
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The Vienna School
Many outstanding scientists were active in meteorological
studies in Austria in the period 1890–1925, and great progress
was made in dynamic and synoptic meteorology and in cli-
matology during this time.

Julius Hann Josef Pernter

Wilhelm Trabert Felix Exner

Wilhelm Schmidt Heinrich Ficker

Albert Defant Max Margules
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Max Margules (1856–1920)

Photograph from the archives of Zentralanstalt für

Meteorologie und Geodynamik, Wien.

Margules was born in the
town of Brody, in western
Ukraine, in 1856.

He studied mathematics and
physics at Vienna University,
and among his teachers was
Ludwig Boltzmann.

In 1882 he joined the Mete-
orological Institute as an As-
sistant, and continued to work
there for 24 years.

10



Some of Margules’ Achievements
Margules studied the diurnal and semi-diurnal variations in
atmospheric pressure due to solar radiative forcing.

He derived two species of solutions of the Laplace tidal
equations, which he called Wellen erster Art and Wellen
zweiter Art

This was the first identification of the distinct types of waves
now known as inertia-gravity waves and rotational waves.

? ? ?
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Margules studied the diurnal and semi-diurnal variations in
atmospheric pressure due to solar radiative forcing.

He derived two species of solutions of the Laplace tidal
equations, which he called Wellen erster Art and Wellen
zweiter Art

This was the first identification of the distinct types of waves
now known as inertia-gravity waves and rotational waves.

? ? ?

Margules showed that the available potential energy associ-
ated with horizontal temperature contrasts within a midlat-
itude cyclone was sufficient to explain the observed winds.

This work suggested that there were sloping frontal surfaces
associated with mid-latitude depressions, and foreshadowed
the frontal theory which emerged about a decade later.
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A Meteorological Tragedy
Margules was an introverted and lonely man, who never
married and worked in isolation, not collaborating with
other scientists.

He was disappointed and disillusioned at the lack of recog-
nition of his work and retired from the Meteorological In-
stitute in 1906, aged only fifty, on a modest pension.

12



A Meteorological Tragedy
Margules was an introverted and lonely man, who never
married and worked in isolation, not collaborating with
other scientists.

He was disappointed and disillusioned at the lack of recog-
nition of his work and retired from the Meteorological In-
stitute in 1906, aged only fifty, on a modest pension.

Its value was severely eroded during the First World War so
that his 400 crowns per month was worth about one Euro,
insufficient for more than the most meagre survival.

His colleagues tried their best to help him, making repeated
offers of help which Margules resolutely resisted.

12



A Meteorological Tragedy
Margules was an introverted and lonely man, who never
married and worked in isolation, not collaborating with
other scientists.

He was disappointed and disillusioned at the lack of recog-
nition of his work and retired from the Meteorological In-
stitute in 1906, aged only fifty, on a modest pension.

Its value was severely eroded during the First World War so
that his 400 crowns per month was worth about one Euro,
insufficient for more than the most meagre survival.

His colleagues tried their best to help him, making repeated
offers of help which Margules resolutely resisted.

He died of starvation in 1920.

12



A Layer of Incompressible Fluid
The physical principle of mass conservation is expressed
mathematically in terms of the continuity equation

∂ρ

∂t
+∇·ρV = 0

? ? ?
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A Layer of Incompressible Fluid
The physical principle of mass conservation is expressed
mathematically in terms of the continuity equation

∂ρ

∂t
+∇·ρV = 0

? ? ?

Under hydrostatic balance the pressure at a point is deter-
mined by the weight of air above it.

We can replace the atmosphere by an incompressible fluid
layer of finite depth. We take the density to be numerically
equal to one (i.e., ρ = 1kgm−3, comparable to air).

Then, if the depth is ten kilometres (or h = 104 m), the
pressure is p = ρgh = 1× 10× 104 = 105 Pa = 1 atm.

In other words, this ten-kilometre layer of incompressible
fluid of unit density gives rise to a surface pressure similar
to that of the compressible atmosphere.
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We consider a square geographical region of side 10 km:

The area of the region is 108 square metres.
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The column of fluid above this square forms a cube whose
volume is the area multiplied by the depth:

V = 108 × 104 = 1012 m3

The total mass of fluid contained in the cube (in kg) has the
same numerical value as the volume:

M = 1012 kg = 1000 megatonnes
15



Convergence and Divergence
How does the pressure at a point change?
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Convergence and Divergence
How does the pressure at a point change?
Since pressure is due to the weight of fluid above the point
in question, the only way it can change is through fluxes
of air into or out of the column above the point.

Nett inward and outward fluxes are respectively called
convergence and divergence.

A difficulty arises because the nett convergence or diver-
gence is a small difference between two large numbers.

? ? ?

Suppose that the movement of air is from west to east, so
that no air flows through the north or south faces of our
cubic column.

Assume for now that the wind speed has a uniform value of
ten metres per second.
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Thus, in a single second, a slab of air of lateral extend 10 km,
of height 10 km and of thickness ten metres, moves into the
cube through its western face
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The slab of air moving into the cube has volume

Vin = 109 m3

Its mass has the same numerical value (since ρ = 1):

Min = 109 kg

So the mass of the cube would increase by 109 kg, or one
megatonne per second if there were only inward flux.
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The slab of air moving into the cube has volume

Vin = 109 m3

Its mass has the same numerical value (since ρ = 1):

Min = 109 kg

So the mass of the cube would increase by 109 kg, or one
megatonne per second if there were only inward flux.

However, there is a corresponding flux of air outward through
the eastern face of the cube, with precisely the same value.

So, the nett flux is zero:

(Flux)in = (Flux)out

The total mass of air in the cube is unchanged, and the
surface pressure remains constant.
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Now suppose that the flow speed inward through the west-
ern face of the cube is slightly greater, let us say 1% greater:

uin = 10.1 ms−1 , uout = 10.0 ms−1
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Now suppose that the flow speed inward through the west-
ern face of the cube is slightly greater, let us say 1% greater:

uin = 10.1 ms−1 , uout = 10.0 ms−1

There is thus more fluid flowing into the cube than out.
There is a nett convergence of mass into the cube.

We may expect a pressure rise. Let us now calculate it.
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The additional inward flux of mass is 1% of the total inward
flux:

∆(Flux)in = 0.01× 109 = 107 kg s−1

Initially, the total mass of the cube was M = 1012 kg, so the
fractional increase in mass in one second is

∆M

M
=

107

1012
= 10−5
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The additional inward flux of mass is 1% of the total inward
flux:

∆(Flux)in = 0.01× 109 = 107 kg s−1

Initially, the total mass of the cube was M = 1012 kg, so the
fractional increase in mass in one second is

∆M

M
=

107

1012
= 10−5

Pressure is proportional to mass. Therefore, the fractional
increase in pressure is precisely the same.

To get the rate of increase in pressure, we multiply the

total pressure by this ratio:

dp

dt
=

∆M

M
× p = 10−5 × 105 = 1Pa s−1

The rate of pressure increase is one Pascal per second.
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A pressure tendency of 1Pa s−1 may not sound impressive
but, if sustained over a long period of time, it is dramatic.
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A pressure tendency of 1Pa s−1 may not sound impressive
but, if sustained over a long period of time, it is dramatic.

We recall that there are 86,400 seconds in a day. For sim-
plicity, we define a “day” to be 105 s (∼28 hours).

The pressure change in a “day” will then be the tendency
(dp/dt) multiplied by the number of seconds in a “day”:

∆p = (1Pa s−1)× (105 s) = 105 Pa

Thus, the pressure will increase by 105 Pascals in a day.

But this is the same as its initial value, so:

The pressure increases by 100% in a day!
And this is due to a difference in wind speed so small that
we cannot even measure it (∆u = 0.1ms−1).
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An even more paradoxical conclusion is reached if we con-
sider the speed at the western face to be 1% less than the
outflow speed at the eastern face.

The above reasoning would suggest a decrease of pressure
by 100% in a day, resulting in a total vacuum and leaving
the citizens of London quite breathless.

? ? ?
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An even more paradoxical conclusion is reached if we con-
sider the speed at the western face to be 1% less than the
outflow speed at the eastern face.

The above reasoning would suggest a decrease of pressure
by 100% in a day, resulting in a total vacuum and leaving
the citizens of London quite breathless.

? ? ?

Of course, there is a blunder in the reasoning: as the mass
in the ‘cube’ decreases, its volume must decrease in propor-
tion, since the density is constant.

The fluid depth, which we took to be constant, must de-
crease.

? ? ?

Margules concluded that any attempt to forecast the weather
was “immoral and damaging to the character
of a meteorologist” (Fortak, 2001).
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The Second Reading from

The Book of Limerick

Said Margules, with trepidation,
“There’s hazards with mass conservation:

Gross errors you’ll see
In dee-pee-dee-tee,

Arising from blind computation”.
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Gravity Waves
While the calculated pressure tendency is arithmetically
correct, the resulting pressure change over a day is meteo-
rologically preposterous. Why?

? ? ?
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Gravity Waves
While the calculated pressure tendency is arithmetically
correct, the resulting pressure change over a day is meteo-
rologically preposterous. Why?

? ? ?

We have extrapolated the instantaneous pressure change,
assuming it to remain constant over a long time period.

An increase of pressure within the cube causes an immediate
outward pressure gradient which opposes further change.

Indeed, the result of this negative feedback is for over-
compensation, and a cycle of pressure oscillations ensues.
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These oscillations are known as gravity waves, and they ra-
diate outwards with high speed from a localised disturbance,
dispersing it over a wider area.

As soon as an imbalance arises in the atmosphere, these
gravity waves act in such a way as to restore balance.
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These oscillations are known as gravity waves, and they ra-
diate outwards with high speed from a localised disturbance,
dispersing it over a wider area.

As soon as an imbalance arises in the atmosphere, these
gravity waves act in such a way as to restore balance.

Since they are of high frequency, they result in pressure
changes which are large but which oscillate rapidly in time:

The instantaneous rate of change is not a re-
liable indicator of the long-term change.

The computational time step has to be short enough to allow
the adjustment process to take place.

Then, gravity-wave oscillations may be present, but they
need not spoil the forecast.
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Gravity-wave oscillations may be effectively removed by a
minor adjustment of the initial data ; this process is called
initialization.

Modern numerical forecasts are made using the continuity
equation, but initialization controls excessive gravity wave
noise and a small time step ensures that the calculations
remain stable.

? ? ?
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Gravity-wave oscillations may be effectively removed by a
minor adjustment of the initial data ; this process is called
initialization.

Modern numerical forecasts are made using the continuity
equation, but initialization controls excessive gravity wave
noise and a small time step ensures that the calculations
remain stable.

? ? ?

Bjerknes ruled out analytical solution of the mathematical
equations, due to their nonlinearity and complexity.

However, there was a scientist more bold — or foolhardy
— than Bjerknes, who actually tried to calculate future
weather. This was Lewis Fry Richardson

26



Richardson’s Forecast
During the First World War, Lewis Fry Richardson carried
out a manual calculation of the change in pressure over Cen-
tral Europe (Richardson, 1922).

His initial data were based on a series of synoptic charts
published in Leipzig by Vilhelm Bjerknes.

Using Bjerknes’ charts, he extracted the relevant values on
a discrete grid, and computed the rate of change of pressure
for a region in Southern Germany.
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Richardson’s Forecast
During the First World War, Lewis Fry Richardson carried
out a manual calculation of the change in pressure over Cen-
tral Europe (Richardson, 1922).

His initial data were based on a series of synoptic charts
published in Leipzig by Vilhelm Bjerknes.

Using Bjerknes’ charts, he extracted the relevant values on
a discrete grid, and computed the rate of change of pressure
for a region in Southern Germany.

To do this, he used the continuity equation, employing pre-
cisely the method which Margules had shown more than ten
years earlier to be seriously problematical.

As is well known, the resulting “prediction” of pressure
change was completely unrealistic.
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Lewis Fry Richardson, 1881–1953.
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• Born, 11 October, 1881, Newcastle-upon-Tyne

• Family background: well-known quaker family

• 1900–1904: Kings College, Cambridge

• 1913–1916: Met. Office. Superintendent,
Eskdalemuir Observatory

• Resigned from Met Office in May, 1916.
Joined Friends’ Ambulance Unit.

• 1919: Re-employed by Met. Office

• 1920: M.O. linked to the Air Ministry.
LFR Resigned, on grounds of concience

• 1922: Weather Prediction by Numerical Process

• 1926: Break with Meteorology.
Worked on Psychometric Studies.
Later on Mathematical causes of Warfare

• 1940: Resigned to pursue “peace studies”

• Died, September, 1953.

Richardson contributed to Meteorology, Numerical Analysis, Fractals,

Psychology and Conflict Resolution.
29



The Finite Difference Scheme
The globe is divided into cells, like the check-
ers of a chess-board.
Spatial derivatives are replaced by finite dif-
ferences:

df

dx
→ f (x + ∆x)− f (x−∆x)

2∆x
.

Similarly for time derivatives:

dQ

dt
→ Qn+1 −Qn−1

2∆t
= Fn

This can immediately be solved for Qn+1:

Qn+1 = Qn−1 + 2∆tFn .
By repeating the calculations for many time steps, we can
get a forecast of any length.
Richardson calculated only the initial rates of change.

30



The Leipzig Charts for 0700 UTC, May 20, 1910

Bjerknes’ sea level pressure
analysis.

Bjerknes’ 500 hPa height
analysis.

Some of the initial data for Richardson’s “forecast”.
31



Richardson’s Spread-sheet

Richardson’s Computing Form PXIII
The figure in the bottom right corner is the forecast

change in surface pressure: 145 mb in six hours!

32



Richardson’s Spread-sheet

Richardson’s Computing Form PXIII
The figure in the bottom right corner is the forecast

change in surface pressure: 145 mb in six hours!

In SI units, the pressure change was 14500Pa.
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Smooth Evolution of Pressure
x
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Noisy Evolution of Pressure
x

34



Tendency of a Smooth Signal
x
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Tendency of a Noisy Signal
x
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The Third Reading from

The Book of Limerick

Young Richardson wanted to know
How quickly the pressure would grow.

But, what a surprise, ’cos
The six-hourly rise was,

In Pascals, One Four Five Oh Oh!
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Richardson’s Forecast Factory (A. Lannerback).
Dagens Nyheter, Stockholm. Reproduced from L. Bengtsson, ECMWF, 1984
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Richardson’s Forecast Factory (A. Lannerback).
Dagens Nyheter, Stockholm. Reproduced from L. Bengtsson, ECMWF, 1984

64,000 Computers: The first Massively Parallel Processor
38



Advances 1920–1950

�Dynamic Meteorology

� Rossby Waves

� Quasi-geostrophic Theory

� Baroclinic Instability

�Numerical Analysis

� CFL Criterion

�Atmopsheric Observations

� Radiosonde

�Electronic Computing

� ENIAC
39



The ENIAC
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Electronic Computer Project, 1946
(under direction of John von Neumann)
Von Neumann’s idea:
Weather forecasting was a scientific problem par excellence
for solution using a large computer.

The objective of the project was to study the problem of
predicting the weather by simulating the dynamics of the
atmosphere using a digital electronic computer.

A Proposal for funding listed three “possibilities”:

1. Entirely new methods of weather prediction by calcula-
tion will have been made possible;

2. A new rational basis will have been secured for the plan-
ning of physical measurements and field observations;

3. The first step towards influencing the weather by rational
human intervention will have been made.
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The ENIAC

The ENIAC (Electronic Nu-
merical Integrator and Com-
puter) was the first multi-
purpose programmable elec-
tronic digital computer.
It had:

• 18,000 vacuum tubes

• 70,000 resistors

• 10,000 capacitors

• 6,000 switches

Power Consumption: 140 kWatts
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The ENIAC: Technical Details.
ENIAC was a decimal machine. No high-level language.
Assembly language. Fixed-point arithmetic: −1 < x < +1.
10 registers, that is,
Ten words of high-speed memory.
Function Tables:
624 6-digit words of “ROM”, set on
ten-pole rotary switches.
“Peripheral Memory”:
Punch-cards.
Speed: FP multiply: 2ms
(say, 500 Flops).
Access to Function Tables: 1ms.
Access to Punch-card equipment:
You can imagine!
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Jule Charney found the solution to the noise problem: he
derived the the Quasi-geostrophic equations.

The Q-geostrophic equations are a Filtered System.

They have solutions corresponding to “weather waves” but
no solutions corresponding to “noise waves”.

? ? ?
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Jule Charney found the solution to the noise problem: he
derived the the Quasi-geostrophic equations.

The Q-geostrophic equations are a Filtered System.

They have solutions corresponding to “weather waves” but
no solutions corresponding to “noise waves”.

? ? ?

Evolution of the Project:

• Plan A: Integrate the Primitive Equations

Problems similar to Richardson’s would arise

• Plan B: Integrate baroclinic Q-G System

Too computationally demanding

• Plan C: Solve barotropic vorticity equation

Very satisfactory initial results
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The Fourth Reading from

The Book of Limerick

Jule Charney was quite philosophic:
“The system called Q-geostrophic,

With filtered equations
Sans fast oscillations,

Will obviate trends catastrophic”.

45



Charney, Fjørtoft, von Neumann
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Charney, et al., Tellus, 1950.[
Absolute

Vorticity

]
=

[
Relative

Vorticity

]
+

[
Planetary

Vorticity

]
η = ζ + f .

The atmosphere is treated as a single layer, and the flow is
assumed to be nondivergent. Absolute vorticity is conserved
following the flow.

d(ζ + f )

dt
= 0.

This equation looks deceptively simple. But it is nonlinear:

∂ζ

∂t
+ V · ∇(ζ + f ) = 0 .

Or, in more detail:

∂

∂t
∇2ψ +

{
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x

}
+ β

∂ψ

∂x
= 0 ,
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Solution method for BPVE
∂ζ

∂t
= −J(ψ, ζ + f )

1. Compute Jacobian

2. Step forward (Leapfrog scheme)

3. Solve Poisson equation for ψ (Fourier expansion)

4. Go to (1).

• Timestep : ∆t = 1 hour (2 and 3 hours also tried)

• Gridstep : ∆x = 750 km (approximately)

• Gridsize : 18 x 15 = 270 points

• Elapsed time for 24 hour forecast: About 24 hours.

Forecast involved punching about 25,000 cards. Most of the
elapsed time was spent handling these.
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ENIAC Algorithm

49



ENIAC: First Computer Forecast
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Richardson’s reaction

�“Allow me to congratulate you and your
collaborators on the remarkable progress
which has been made in Princeton.

�“This is . . . an enormous scientific ad-
vance on the single, and quite wrong,
result in which Richardson (1922) ended.”
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The Fifth Reading from

The Book of Limerick

Old Richardson’s fabulous notion
Of forecasting turbulent motion

Seemed totally off-the-track,
But then came the ENIAC,

To model the air and the ocean.
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NWP Operations
The Joint Numerical Weather Prediction (JNWP) Unit was

established on July 1, 1954:

�Air Weather Service of US Air Force

�The US Weather Bureau

�The Naval Weather Service.

Operational numerical forecasting began on 15 May, 1955,
using a three-level quasi-geostrophic model.

53



Physical Laws of the Atmosphere
GAS LAW (Boyle’s Law and Charles’ Law.)
Relates the pressure, temperature and density
CONTINUITY EQUATION
Conservation of mass; air neither created nor distroyed
WATER CONTINUITY EQUATION
Conservation of water (liquid, solid and gas)
EQUATIONS OF MOTION: Navier-Stokes Equations
Describe how the change of velocity is determined by the
pressure gradient, Coriolis force and friction
THERMODYNAMIC EQUATION
Determines changes of temperature due to heating or cool-
ing, compression or rarifaction, etc.

Seven equations; seven variables (u, v, w, ρ, p, T, q).
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The Primitive Equations

du

dt
−

(
f +

u tanφ

a

)
v +

1

ρ

∂p

∂x
+ Fx = 0

dv

dt
+

(
f +

u tanφ

a

)
u +

1

ρ

∂p

∂y
+ Fy = 0

p = RρT
∂p

∂y
+ gρ = 0

dT

dt
+ (γ − 1)T∇ ·V =

Q

cp
∂ρ

∂t
+∇ · ρV = 0

∂ρw
∂t

+∇ · ρwV = [Sources− Sinks]

Seven equations; seven variables (u, v, w, p, T, ρ, ρw).
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Scientific Weather Forecasting in a Nut-Shell

• The atmosphere is a physical system

• Its behaviour is governed by the laws of physics

• These laws are expressed quantitatively in the form of
mathematical equations

• Using observations, we can specify the atmospheric state
at a given initial time: “Today’s Weather”

• Using the equations, we can calculate how this state will
change over time: “Tomorrow’s Weather”
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Scientific Weather Forecasting in a Nut-Shell

• The atmosphere is a physical system

• Its behaviour is governed by the laws of physics

• These laws are expressed quantitatively in the form of
mathematical equations

• Using observations, we can specify the atmospheric state
at a given initial time: “Today’s Weather”

• Using the equations, we can calculate how this state will
change over time: “Tomorrow’s Weather”

• The equations are very complicated (non-linear) and a
powerful computer is required to do the calculations

• The accuracy decreases as the range increases; there is
an inherent limit of predictibility.
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Progress in numerical weather prediction over
the past fifty years has been quite dramatic.

Forecast skill continues to increase.
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Progress in numerical weather prediction over
the past fifty years has been quite dramatic.

Forecast skill continues to increase.

However, there is a limit . . .
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Chaos in Atmospheric Flow

Edward Lorenz (b. 1917)

In a paper published in

1963, entitled Deterministic

Nonperiodic Flow, Edward

Lorenz showed that the sim-

ple system

ẋ = −σx + σy
ẏ = −xz + rx
ż = +xy − bz

has solutions which are highly
sensitive to the initial condi-
tions.
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The characteristic butterfly pattern in Lorenz’s Equations.
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Lorenz’s work demonstrated the practical impossibility of
making accurate, detailed long-range weather forecasts.

This problem can be traced back to Poincaré, but it was
Lorenz who formulated it in precise, quantitative terms.
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Lorenz’s work demonstrated the practical impossibility of
making accurate, detailed long-range weather forecasts.

This problem can be traced back to Poincaré, but it was
Lorenz who formulated it in precise, quantitative terms.

In his 1963 paper he wrote:

“. . . one flap of a sea-gull’s wings may forever
change the future course of the weather.”

Within a few years, he had changed species:

“Predictability:
does the flap of a butterfly’s wings in
Brazil set off a tornado in Texas?”

[Title of a lecture at an AAAS conference in Washington.]
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The Sixth Reading from

The Book of Limerick

Lorenz demonstrated, with skill,
The chaos of heat-wave and chill:

Tornadoes in Texas
Are formed by the flexes

Of butterflies’ wings in Brazil.
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Flow-dependent Predictability
Weather forecasts lose skill because of the growth of er-
rors in the initial conditions (initial uncertainties) and be-
cause numerical models describe the atmosphere only ap-
proximately (model uncertainties).
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Flow-dependent Predictability
Weather forecasts lose skill because of the growth of er-
rors in the initial conditions (initial uncertainties) and be-
cause numerical models describe the atmosphere only ap-
proximately (model uncertainties).

As a further complication, predictability is flow-dependent.

The Lorenz model illustrates variations in predictability for different initial conditions.
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Spaghetti plots for ensembles from two starting times.
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Ensemble Forecasting
In recognition of the chaotic nature of the atmosphere, focus
has now shifted to predicting the probability of alternative
weather events rather than a single outcome.
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Ensemble Forecasting
In recognition of the chaotic nature of the atmosphere, focus
has now shifted to predicting the probability of alternative
weather events rather than a single outcome.

The mechanism is the Ensemble Prediction System (EPS)
and the world leader in this area is the European Centre for
Medium-range Weather Forecasts (ECMWF).
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A Sample Ensemble Forecast

The figure shows the verify-
ing analysis (top left), and 15
132-hour (6.5 day) forecasts
of sea-level pressure starting
from slightly different condi-
tions.
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Ensemble of fifty forecasts from ECMWF.

These products are produced routinely and used operationally in the member states.
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The Seventh (and last) Reading

from The Book of Limerick
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If errors still bother you, Tough!
Uncertainty is The Right Stuff.

68



The Seventh (and last) Reading

from The Book of Limerick

If errors still bother you, Tough!
Uncertainty is The Right Stuff.

It’s anyone’s guess,
So use E-P-S,

From E-C-M-Double-you-uhf.

68



Thank you
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