

Weather Forecasting Models in Met Éireann

Eoin Whelan UCD Seminar 3rd April 2012

- Background
- HIRLAM Models
- Local Implementation
- Verification
- Development work

Background

met.ie

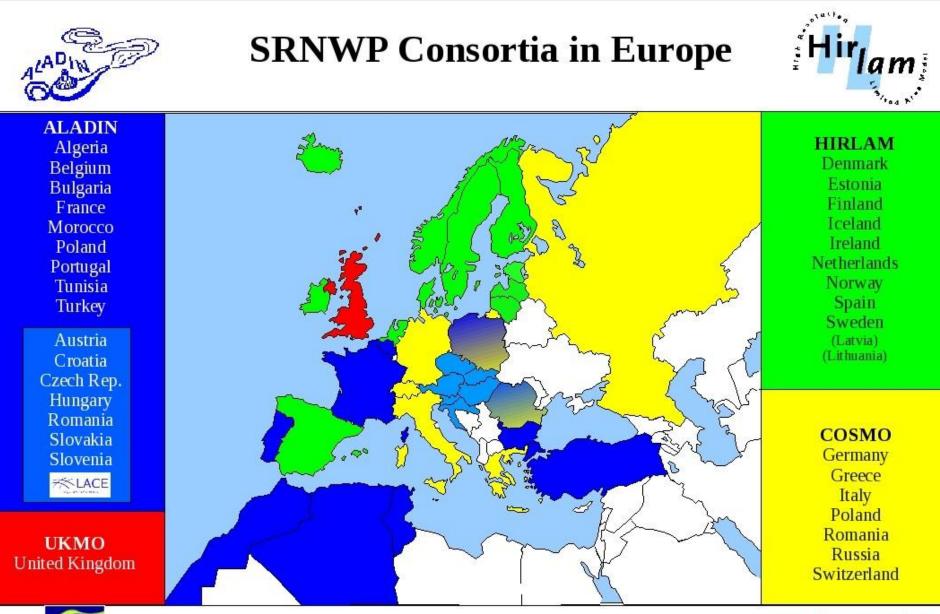
- Dept of the Environment, Community & Local Government
- *"Monitor, analyse and predict Ireland's weather and climate, and to provide a range of high quality meteorological and related information to our customers"*
- First 'real time' weather observation was transmitted from Valentia Island in Co. Kerry October 8th 1860
- Met Éireann founded in 1936
- HQ in Glasnevin, Dublin

Richardson's Dream met.ie

- British scientist Lewis Fry Richardson's book "Weather Prediction by Numerical Process"
- No computers, so ...
- Work force of 64,000 people with mechanical calculators
- Leader in centre with coloured light to coordinate the forecast

Some computer history met.ie

- 1951: ENIAC forecasts, first successful numerical simulation
- 1954: SMHI first to have operational forecast model
- 1978: TCD/Met Éireann DEC 20/40
 - SMHI quasi-geostrophic model
- 1979: Met Éireann DEC 20/50 fastest computer in Ireland
 - Yugoslavian primitive equation model on 5 levels + SMHI OI Analysis
- 1986: Met Éireann joins HIRLAM consortium
- 1994: Met Éireann SGI R10000 first multi core computer
- 2001: Met Éireann 18 core IBM cluster
- 2007: ICHEC



met.ie

- Irish Centre for High End Computing
- Used operationally since June 2007
- Guaranteed use of 16 nodes
- Collaboration with research & development

HIRLAM Consortium

met.ie

- HIRLAM: High Resolution Limited Area Model
- Co-operation of 10 NMSs initiated in 1985
- Met Éireann joined in 1986
- Météo France & ALADIN cooperate with research
- NMSs commit at least 2 staff each year
- Other contributors involved as well

HIRLAM Consortium

met.ie

- Multiple phases since 1985
- HIRLAM-B since 1st January 2011
- Cooperation with MF & ALADIN consortium
- Main goals:
 - Development of Harmonie
 - Development of GLAMEPS
 - Develop cost-effective operational cooperation

HIRLAM Models

HIRLAM Models

met.ie

- HIRLAM: High Resolution Limited Area Model (HIRLAM-A)
- Weather model on 5-20km grid
- Harmonie: <u>HIRLAM-Aladin Research in</u> <u>Mesoscale Operational NWP In Euromet</u> (HIRLAM-B)
- Weather model on kilometre scale grid
- Met Éireann was the 1st HIRLAM NMS to make Harmonie operational

Harmonie development

met.ie

- Developed downstream from ECMWF's IFS

 cycle 36r1 made operational by ECMWF in Jan 2010
- Météo France release LAM version
 Cycle 36t1 made available to HIRLAM in Jan 2010
- HIRLAM staff implement within Harmonie framework
 - Cycle 36h1.1 available to HIRLAM NMSs Jul 2010
- Met Éireann implement operationally

 Cycle 36h1.3 following testing and evaluation Jul 2011

Local Implementation

Operational weather models

met.ie

- "Main" HIRLAM 54h forecast
 4DVAR, 54h forecast, 0.1° grid 60 levels
 00, 06, 12, 18
- "Hourly" HIRLAM 6h forecast (x24)
 - 3DVAR, 6h forecast, 0.15° grid 60 levels
 - Every hour
- "Ireland25" Harmonie 30h forecast (x4)
 - Surface analysis, 30h forecast, 2.5km grid 60 levels
 - 00, 06, 12, 18

Local Harmonie configuration

met.ie

The Irish Meteorological Service

"Ireland25" Harmonie

- Surface analysis only
- 30h forecast
- 2.5km horizontal grid
- 60 vertical levels
- Forecasts at 00, 06, 12, 18

Operational suite

met.ie

- All times UTC
- Main HIRLAM & Harmonie: 00, 06, 12, 18
- Hourly HIRLAM every hour

T+1:15	T+1:30	T+1:45	T+2:00	T+2:15	T+2:30	T+2:45	T+3:00	T+3:15	T+3:30	T+3:45	T+4:00	T+4:15	T+4:30	T+4:45
	Rerun		HIRLAM Main											
				Harmonie										
Hourly				Hourly				Hourly				Hourly		

Resources & Timeliness

met.ie

- HIRLAM must "wait" for observations
- Harmonie must wait for HIRLAM to finish
- Harmonie output must delivered by T+4:00
 - eg 12z output must be available at 16z UTC
- This leaves about 1h15m for Harmonie forecast
- Time-step limited to 60s by grid-spacing of 2.5km

Eulerian Dynamics

met.ie

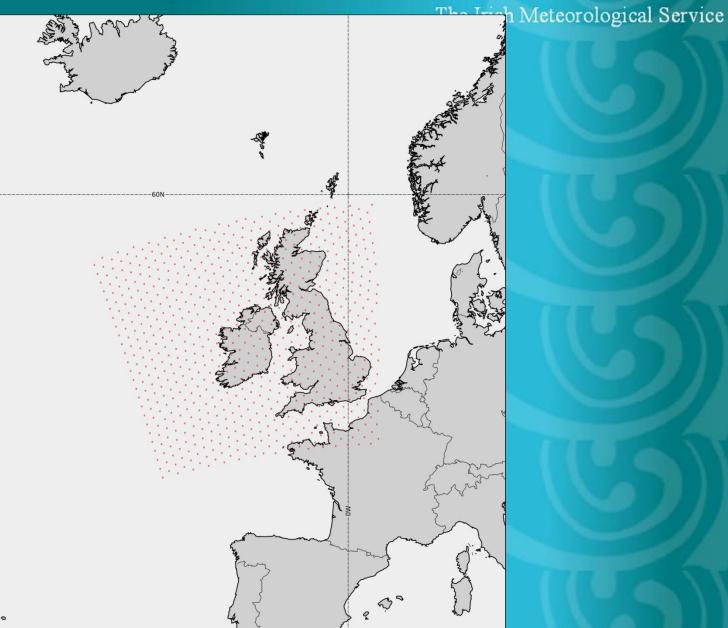
The Irish Meteorological Service

• Courant-Friedrichs-Levy (CFL) stability criterion:

$$\sigma = c \frac{\delta t}{\delta x} \le 1$$

• Harmonie: $\delta x=2.5$ km, c=300m/s (acoustic waves)

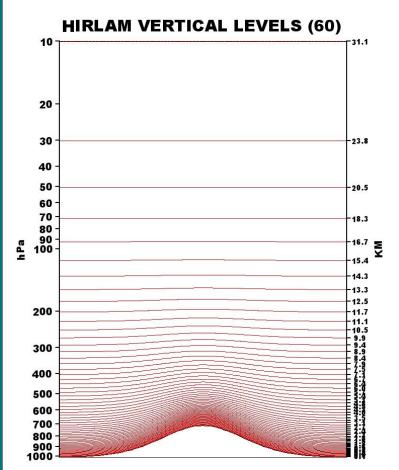
$$\delta t \le \frac{\delta x}{c}$$
$$\delta t \le \frac{2500}{300}$$
$$\delta t \le 8s$$


Semi Lagrangian Dynamics

- Stable tests using CFL numbers ≈ 10
- Thus, $\delta t = 60s$ used

Domain:540x500

met.ie

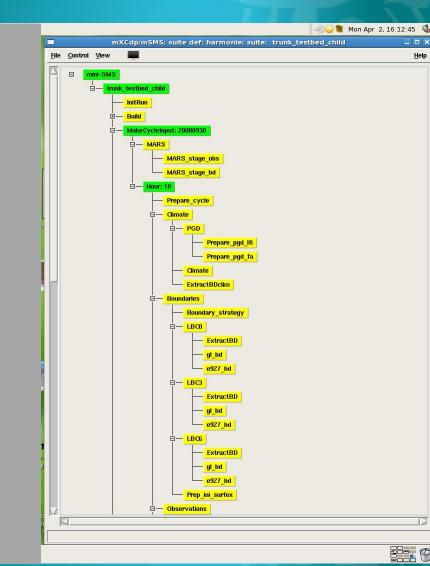


Model Levels

met.ie

The Irish Meteorological Service

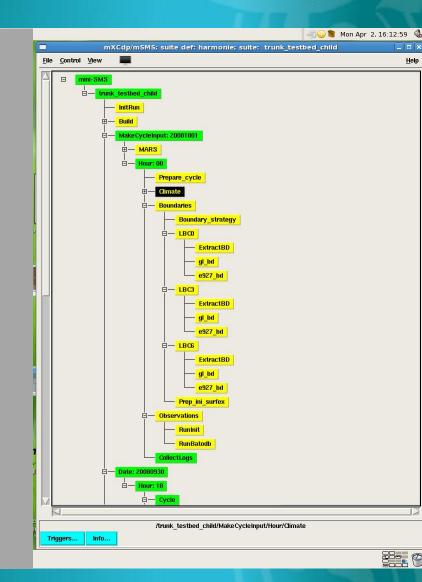
• Top of atmosphere at 10hPa


- First level at 30m
- Levels are "terrain following" eta levels

Forecast Components

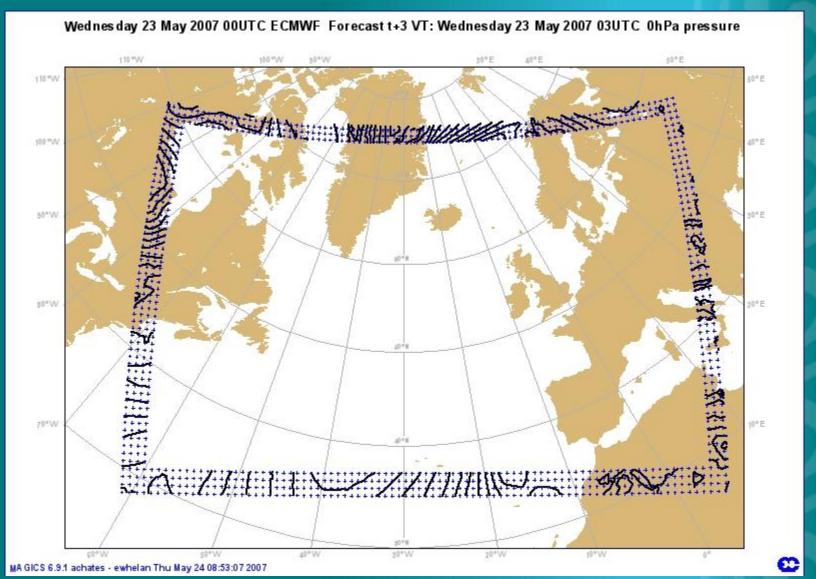
met.ie

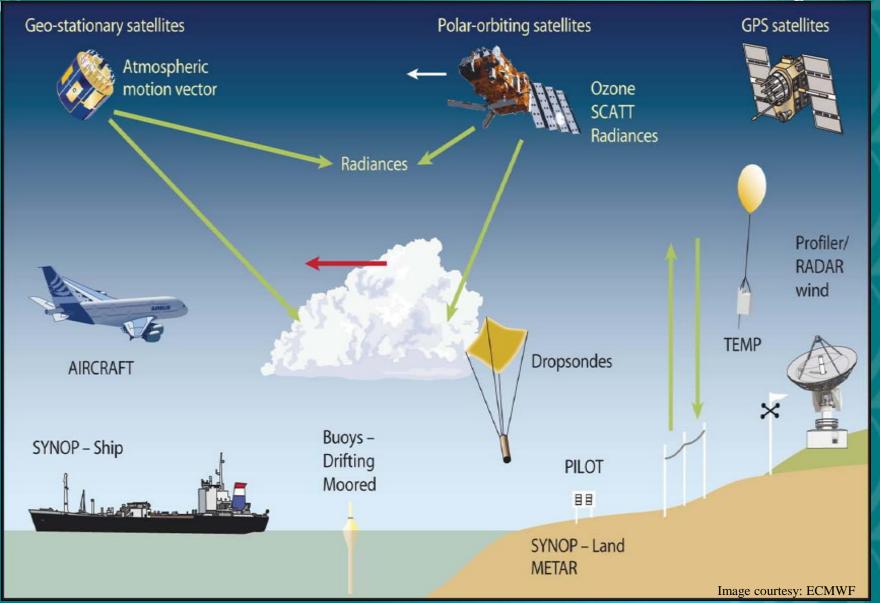
- Executables compiled
- Climate information generated



Forecast Components

met.ie

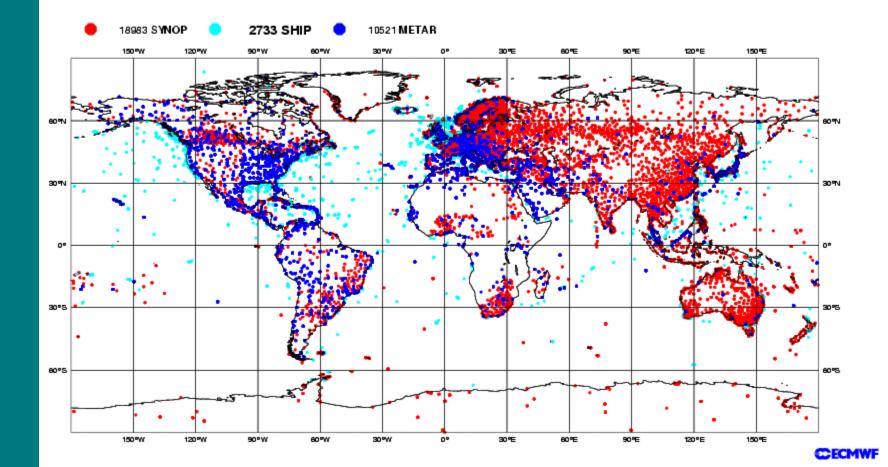

- Boundary files prepared
- Observations prepared


Lateral boundary conditions

met.ie

met.ie

MET Observations

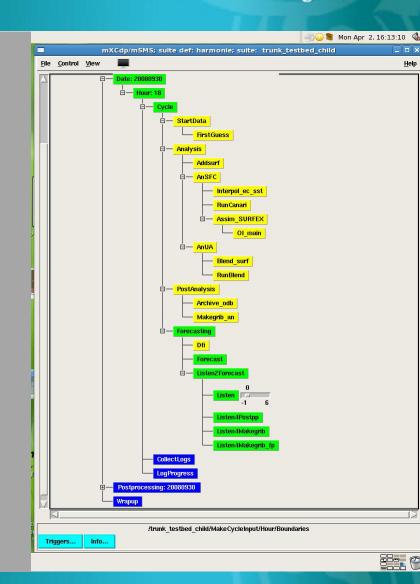


Observations - Availability

met.ie

The Irish Meteorological Service

ECMWF Data Coverage (All obs DA) - Synop-Ship-Metar 23/Mar/2012; 00 UTC Total number of obs = 32237



Forecast Components

met.ie

- First guess retrieved
- Surface Analysis run
- Upper-air Analysis run
- Digital Filter
- Forecast model run

Data assimilation

met.ie

- Model first guess
 - short range forecast from previous cycle
- Observations
- Model, observations weighted by their statistical errors are used to formulate a *cost function*, J
- J represents the misfit between the observations, model first guess and the analysis
- J is minimised to produce the "best-fit" state of the atmosphere

Simple example ...

met.ie

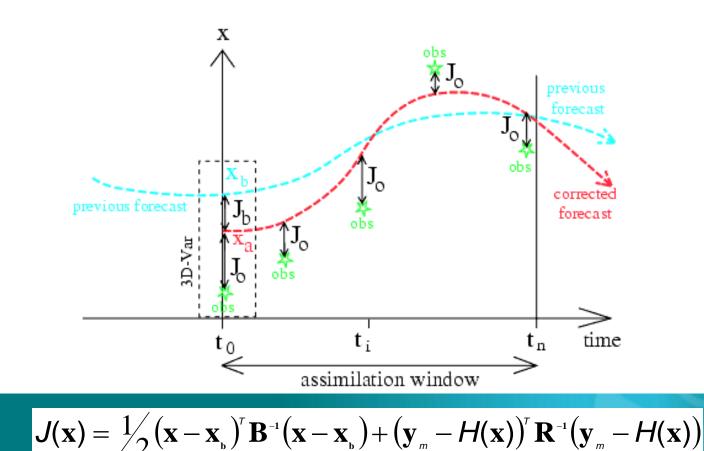
The Irish Meteorological Service

- Two temperature observations, T₁ and T₂
- Error variances of σ_1 and σ_2
- Analyse temperature using two observations

$$J(T) = \frac{1}{2} \left[\frac{(T - T_1)^2}{\sigma_1^2} + \frac{(T - T_2)^2}{\sigma_2^2} \right]$$

• Minimum of J is solution of $\partial J/\partial T=0$

$$T = \left(\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}\right) T_1 + \left(\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}\right) T_2$$


• Observation with smaller error variance is given greater weight

Not so simple ...

met.ie

- 4DVAR: 4-D Variational Data Assimilation
- 3DVAR: 3-D Variational Data Assimilation

Harmonie Forecast model

met.ie

The Irish Meteorological Service

Non-hydrostatic, spectral limited area mesoscale model

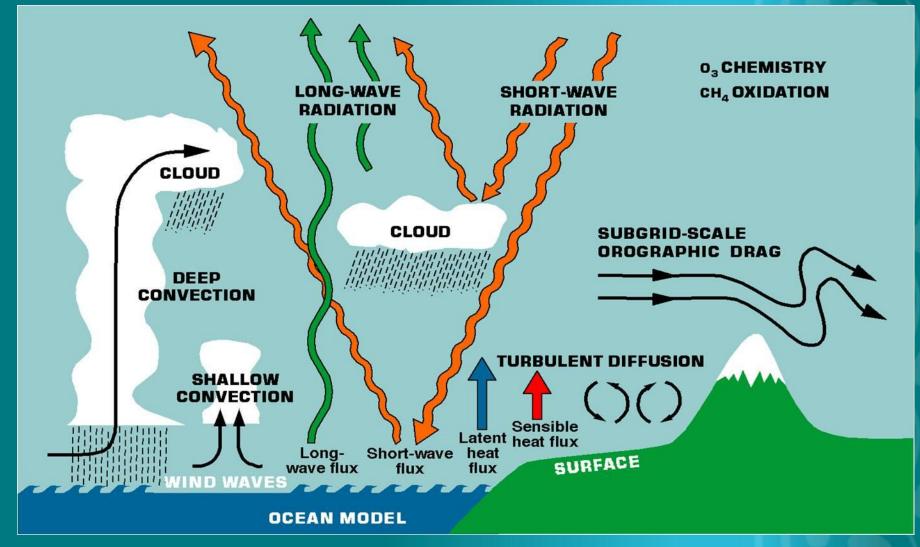
• Non-hydrostatic: entire vertical momentum equation used in the primitive equations.

Hydrostatic approximation not used

$$\frac{1}{\rho}\frac{\partial p}{\partial z} \approx -g$$
 (buoyancy balanced by gravity

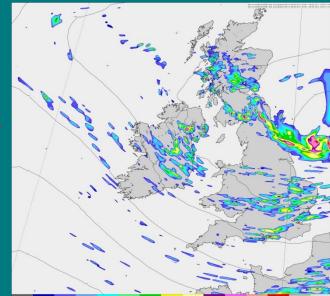
- Spectral: Variables not stored on regular grid but represented by wave functions of differing wavelengths
- Limited area: Forecast calculations carried out on a limited area of the globe
- Mesoscale: kilometre scale processes resolved deep convection, squall lines, sea breezes

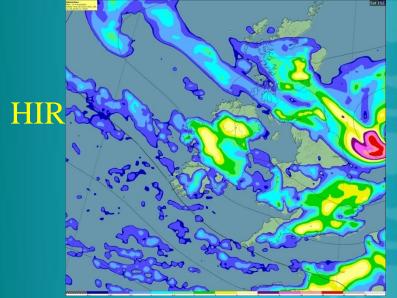
Parameterization

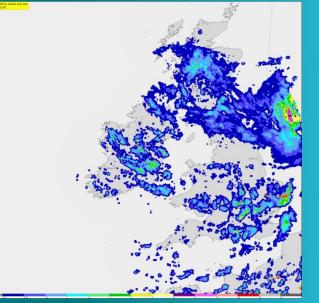

met.ie

- Model resolution limited by computing resources
 - Clouds
 - Turbulent eddies
- Model cannot "see" these things
- Parameterizations are used to simulate the largescale feedback that small scale features produce
 - For example: an "average" cloudiness over a grid box

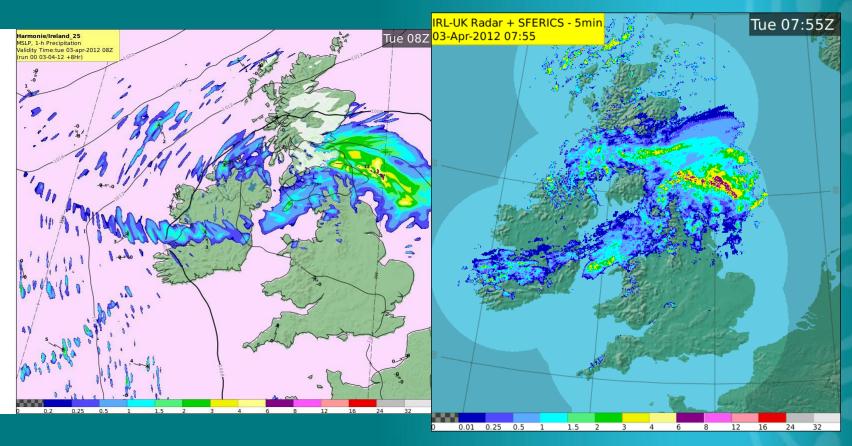
Parameterization


met.ie




met.ie

Sample forecast



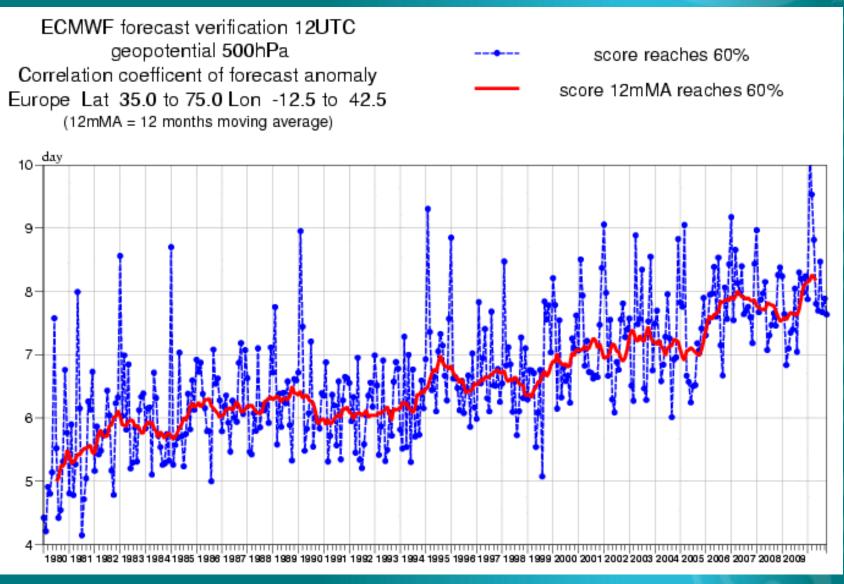
met.ie Today's forecast (20120403 00z) he Irish Meteorological Service

met.ie Today's forecast (20120403 00z) he Irish Meteorological Service

End users of NWP data

met.ie

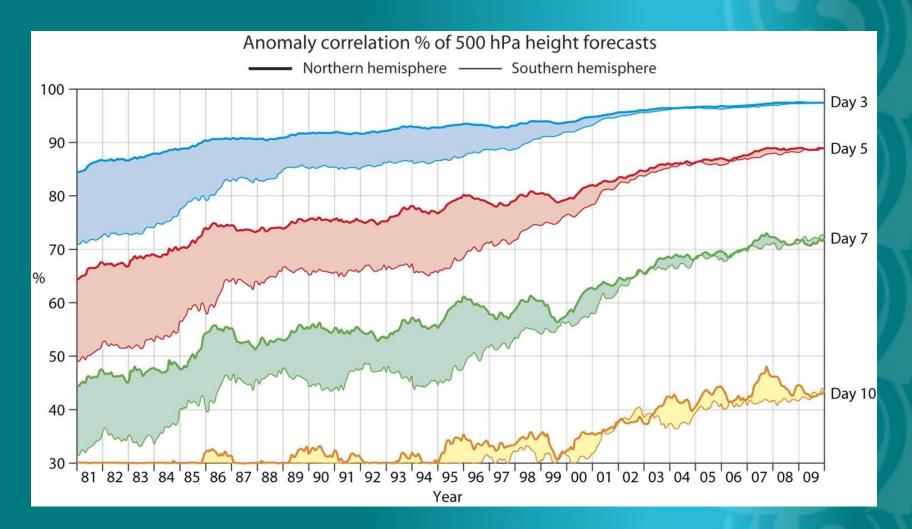
- Met Éireann forecasters
- Roadice forecasts
- Web products
- RPII
- Commercial Customers


The Irish Meteorological Service

Verification

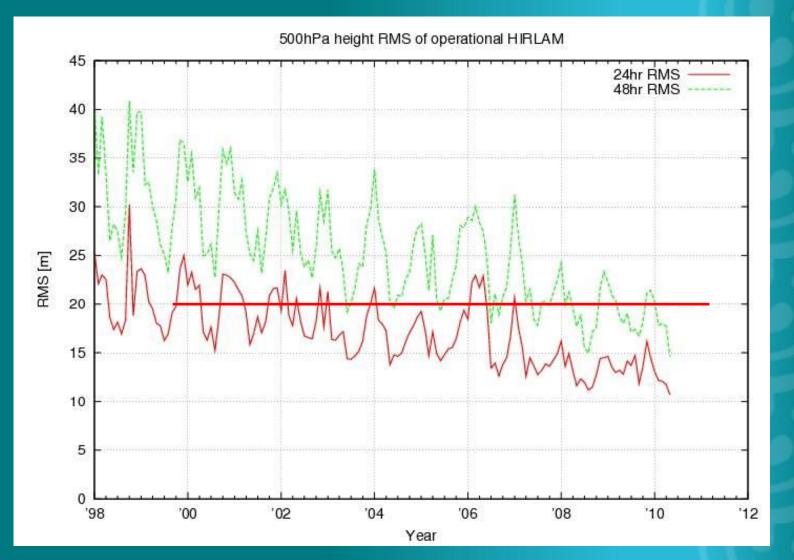
met.ie

ECMWF: historical



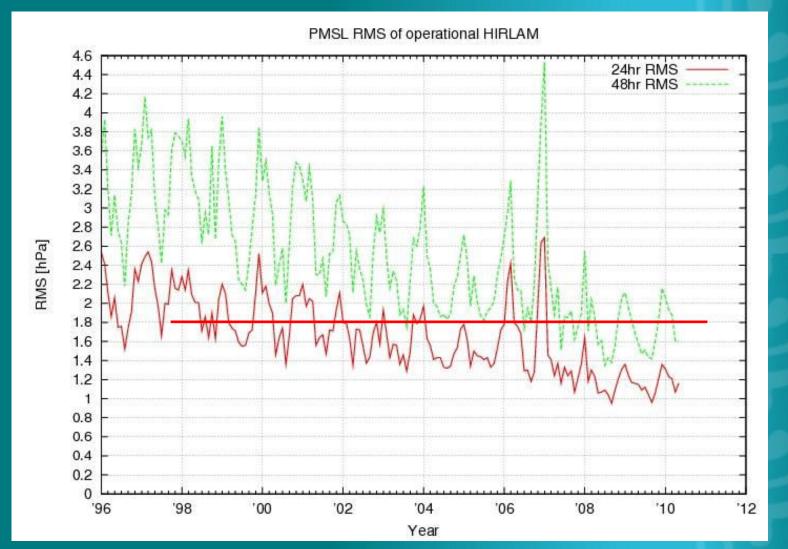
ECMWF: historical

met.ie



HIRLAM: historical

met.ie



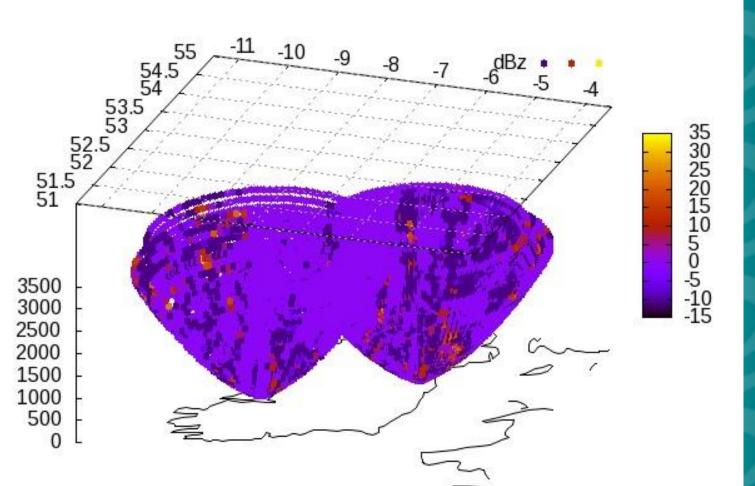
HIRLAM: historical

met.ie

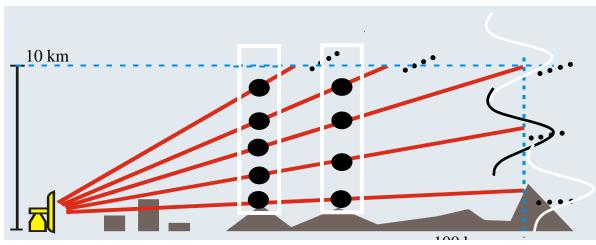
The Irish Meteorological Service

Development Work

Development work at Met Éireann


met.ie

- Surface processes
- Radiation
- <u>Use of Observations</u>

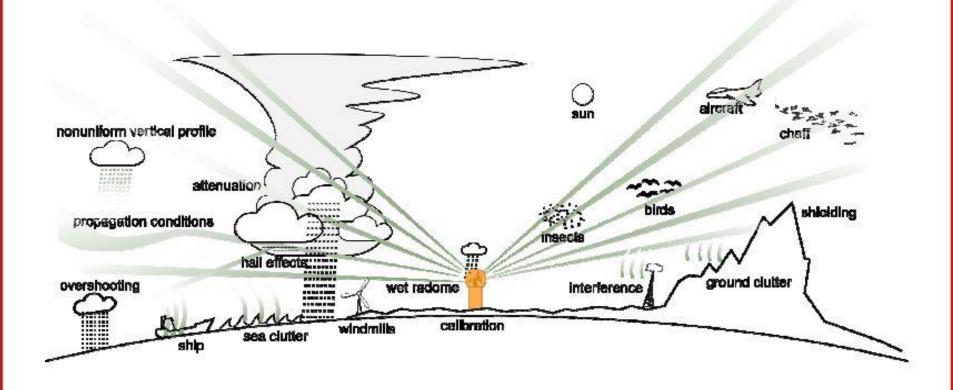


Radar data

met.ie

Radar product for AROME... in the model

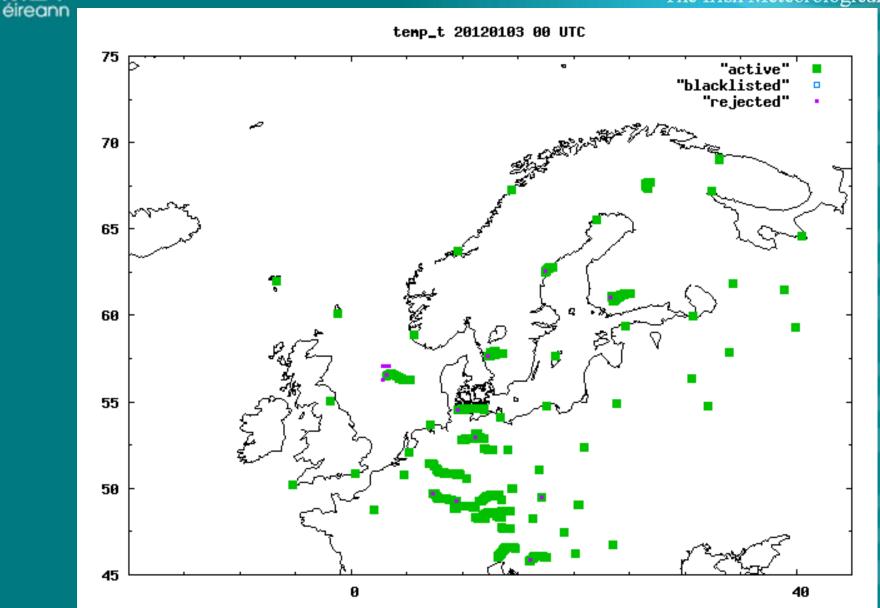
If ONLY ONE pixel is rainy on the column either in the model OR in the radar then


COMPUTING OF A HUMIDITY RETRIEVAL

Using columns of observations in model

- Radar observations considered as profiles in the model
- Altitudes of the pixels calculated considering a constant refractivity index along the ray path (i.e using the approximation of the Earth's effective radius: consistency with observation operator, see hereafter)
- This last approximation is also consistent with the non-horizontal integration of the beam because of parallel purposes of the code (we cannot simulate anomalous propagation and attenuation!!)

Quality challenges



Thanks: M. Peura (FMI)

High-resolution radiosonde data

MET

met.ie

met.ie High-resolution radiosonde data The Irish Meteorological Service

The Irish Meteorological Service

Thank you for your attention! Questions?

Operational HIRLAM details:

met.ie

The Irish Meteorological Service

•*Analysis* : Hirlam 3/4D-Var [3/4-dimensional variational assimilation]. The analysis runs on 60 hybrid [eta] levels. Upper-air observational data is accepted on all standard and significant levels (10 hPa to 1000 hPa) and interpolated to eta levels.

•Assimilation Cycle : Three-hour cycle using the forecast from the previous cycle as a first-guess. [It is also possible to use an ECMWF forecast as a first-guess].

•Initialisation : Digital Filter

•*Forecast Model* : Hirlam 7.2reference system grid point model. This is hydrostatic model and it is run on a rotated latitude-longitude grid with the South-Pole at (-30° longitude, -30° latitude). Fields are based on a 438x284 grid corresponding to a 0.10° x 0.10° horizontal Arakara C-grid. There are 60 levels in the vertical.

•Integration Scheme : We use a two time-level three-dimensional semi-Lagrangian semi-implicit scheme with a time-step of 300 seconds.

•Filtering : Fourth order implicit horizontal diffusion.

•*Physics* : CBR vertical diffusion scheme; Sundqvist condensation scheme with the 'STRACO' (Soft TRAnsition COndensation scheme) cloud scheme; Savijarvi radiation scheme.

•Lateral Boundary Treatment : Davies-Kallberg relaxation scheme using a cosine dependent relaxation function over a boundary zone of 8-lines. The latest available ECMWF 'frame' files are used [based on 4 ECMWF runs per day at 00Z, 06Z, 12Z and 18Z,

Harmonie details:

met.ie

- The HARMONIE model is a non-hydrostatic spectral model, of which the dynamical core (developed by ALADIN) is based on a two-time level semi-implicit Semi-Lagrangian discretisation of the fully elastic equations, using a hybrid coordinate in the vertical. Optionally, for larger domains and coarser resolutions the hydrostatic version of this semi-Lagrangian scheme can be used. An Eulerian dynamics core is available, but has been little used in recent years.
- A variety of sub-gridscale physical processes are taken into account by parametrization schemes. Basically, the parametrizations adopted in HARMONIE are the same as those of the AROME model, developed by the meso-NH community. Extensive scientific documentation is available from the Meso-NH scientific documentation on the upper air physics and on the surface module SURFEX.

met.ie

The Irish Meteorological Service

Example : Typical observed values for mid-latitude synoptic systems: $U \sim 10 \text{ ms}^{-1}$ $W \sim 10^{-2} \,\mathrm{ms}^{-1}$ $L \sim 10^{6} \,\mathrm{m}$ $\Delta p/\rho L \sim 10^3 \text{ m}^2\text{s}^{-2}$ $f_0 \sim 10^{-4} \, \mathrm{s}^{-1}$ *a* ~ 10^7 m $H \sim 10^4 \,{\rm m}$

 $(f = 2\Omega \sin \theta)$

	۵	Scale analysis (continued)					met.ie		
VI Sir	$\frac{du}{dt} = 20$	$2v\sin\theta - 2$	$2\Omega w\cos\theta$ -	$+\frac{uv}{}$ tan	$\theta - \frac{uw}{w} - $	1	∂p	Service	
	dt –						$\partial \lambda$		
	$\frac{dv}{dt} = -2$	$2\Omega u \sin \theta$		$-\frac{u^2}{2}$ tar	$\theta - \frac{vw}{w}$	$\frac{1}{\rho r}\frac{\partial p}{\partial \theta}$			
	dt			r	r	$ ho r \partial heta$	50	5	
			f ₀ W						
	10-4	10-3	10-6	10-3	10-8	10-3			
	dw a		$u^2 + v^2$	$1 \partial p$					
	$\frac{dt}{dt} = 2$	$22u\cos\theta$	$+\frac{u^2+v^2}{r}$	$-\overline{\rho} \overline{\partial r}$	- <i>g</i>			4	
	UW/L	$f_0 U$	U^2/a	p/ p H	g				
	10-7	10-3	10-5	10	10				

₽ é

Scale analysis (continued)

met.ie

The Irish Meteorological Service

•Consequences if you want to resolve synoptic motions in the midlatitudes:

•Assume a shallow atmosphere with radius $r = a + z \sim a$

Allow to drop Coriolis and metric terms which depend on *w*Make the *hydrostatic approximation*

Quasi-Geostrophic balance : accelerations du/dt, dv/dt are "small" differences between two large terms

$$fv \approx \left[\frac{1}{\rho}\frac{\partial p}{\partial x} = fv_g\right]$$
 and $fu \approx \left[-\frac{1}{\rho}\frac{\partial p}{\partial y} = fu_g\right]$

Hydrostatic balance

met.ie

The Irish Meteorological Service

• (approx) no background vertical acceleration

 $\frac{1}{\rho}\frac{\partial p}{\partial z} \approx -g$

Quai-Geostrophic Approx

met.ie

- Mid-latitude Synoptic systems
- Hydrostatic and nearly geostrophic
 - Geostrophic wind: the theoretical wind that would result from an exact balance between the Coriolis effect and the pressure gradient force
 - Hydrostatic balance: (approx) no background vertical acceleration
- Flow is then approx determined by isobaric distribution of geopotential
- Isobaric co-ord sys used:
 - Met measurements generally on p levels
 - Dyn equations simpler on p levels