4. Droplet Growth in Warm Clouds

In warm clouds, droplets can grow by *condensation* in a supersaturated environment and by *colliding* and *coalescing* with other cloud droplets.
4. Droplet Growth in Warm Clouds

In warm clouds, droplets can grow by \textit{condensation} in a supersaturated environment and by \textit{colliding} and \textit{coalescing} with other cloud droplets.

We consider these two growth processes to see if they can explain the formation of rain in warm clouds.

\begin{center}
\hspace*{1cm} ⋆ ⋆ ⋆ ⋆
\end{center}
4. Droplet Growth in Warm Clouds

In warm clouds, droplets can grow by *condensation* in a supersaturated environment and by *colliding* and *coalescing* with other cloud droplets.

We consider these two growth processes to see if they can explain the formation of rain in warm clouds.

* * *

(A) Growth by Condensation
In warm clouds, droplets can grow by \textit{condensation} in a supersaturated environment and by \textit{colliding} and \textit{coalescing} with other cloud droplets.

We consider these two growth processes to see if they can explain the formation of rain in warm clouds.

\begin{center}
\begin{verbatim}
\star \quad \star \quad \star \quad \star
\end{verbatim}
\end{center}

(A) Growth by Condensation

We saw from Kelvin’s Equation that, if the supersaturation is large enough to activate a droplet, the droplet will continue to grow. We will now consider the \textit{rate} at which such a droplet grows by condensation.
Consider first an isolated droplet, with radius r at time t, in a supersaturated environment in which the water vapour density at a large distance from the droplet is $\rho_v(\infty)$ and the water vapour density adjacent to the droplet is $\rho_v(r)$.
Consider first an isolated droplet, with radius r at time t, in a supersaturated environment in which the water vapour density at a large distance from the droplet is $\rho_v(\infty)$ and the water vapour density adjacent to the droplet is $\rho_v(r)$.

We assume that the system is in equilibrium, i.e., there is no accumulation of water vapour in the air surrounding the drop.
Consider first an isolated droplet, with radius r at time t, in a supersaturated environment in which the water vapour density at a large distance from the droplet is $\rho_v(\infty)$ and the water vapour density adjacent to the droplet is $\rho_v(r)$.

We assume that the system is in equilibrium, i.e., there is no accumulation of water vapour in the air surrounding the drop.

Then, the rate of increase in the mass of the droplet at time t is equal to the flux of water vapour across any spherical surface of radius R centered on the droplet.
Consider first an isolated droplet, with radius r at time t, in a supersaturated environment in which the water vapour density at a large distance from the droplet is $\rho_v(\infty)$ and the water vapour density adjacent to the droplet is $\rho_v(r)$.

We assume that the system is in equilibrium, i.e., there is no accumulation of water vapour in the air surrounding the drop.

Then, the rate of increase in the mass of the droplet at time t is equal to the flux of water vapour across any spherical surface of radius R centered on the droplet.

We define the **diffusion coefficient** D of water vapour in air as the rate of mass flow of water vapour across a unit area in the presence of a unit gradient in water vapour density.
Consider first an isolated droplet, with radius \(r \) at time \(t \), in a supersaturated environment in which the water vapour density at a large distance from the droplet is \(\rho_v(\infty) \) and the water vapour density adjacent to the droplet is \(\rho_v(r) \).

We assume that the system is in equilibrium, i.e., there is no accumulation of water vapour in the air surrounding the drop.

Then, the rate of increase in the mass of the droplet at time \(t \) is equal to the flux of water vapour across any spherical surface of radius \(R \) centered on the droplet.

We define the diffusion coefficient \(D \) of water vapour in air as the rate of mass flow of water vapour across a unit area in the presence of a unit gradient in water vapour density.

Then the rate of increase in the mass \(M \) of the droplet is given by

\[
\frac{dM}{dt} = 4\pi R^2 D \frac{d\rho_v}{dR}
\]
Again,

$$\frac{dM}{dt} = 4\pi R^2 D \frac{d\rho_v}{dR}$$

Here ρ_v is the water vapour density at distance $R(> r)$ from the droplet.
Again,

\[\frac{dM}{dt} = 4\pi R^2 D \frac{d\rho_v}{dR} \]

Here \(\rho_v \) is the water vapour density at distance \(R(>r) \) from the droplet.

Since, under steady-state conditions, \(dM/dt \) is independent of \(R \), the above equation can be integrated as follows

\[\frac{dM}{dt} \int_{R=r}^{R=\infty} \frac{dR}{R^2} = 4\pi D \int_{\rho_v(r)}^{\rho_v(\infty)} d\rho_v \]
Again,

\[\frac{dM}{dt} = 4\pi R^2 D \frac{d\rho_v}{dR} \]

Here \(\rho_v \) is the water vapour density at distance \(R(> r) \) from the droplet.

Since, under steady-state conditions, \(dM/dt \) is independent of \(R \), the above equation can be integrated as follows

\[\frac{dM}{dt} \int_{R=r}^{R=\infty} \frac{dR}{R^2} = 4\pi D \int_{\rho_v(r)}^{\rho_v(\infty)} d\rho_v \]

This gives

\[\frac{1}{r} \frac{dM}{dt} = 4\pi D [\rho_v(\infty) - \rho_v(r)] \]
Again,

\[\frac{dM}{dt} = 4\pi R^2 D \frac{d\rho_v}{dR} \]

Here \(\rho_v \) is the water vapour density at distance \(R(> r) \) from the droplet.

Since, under steady-state conditions, \(\frac{dM}{dt} \) is independent of \(R \), the above equation can be integrated as follows

\[\frac{dM}{dt} \int_{R=r}^{R=\infty} \frac{dR}{R^2} = 4\pi D \int_{\rho_v(r)}^{\rho_v(\infty)} d\rho_v \]

This gives

\[\frac{1}{r} \frac{dM}{dt} = 4\pi D [\rho_v(\infty) - \rho_v(r)] \]

Substituting \(M = \frac{4}{3} \pi r^3 \rho_\ell \), where \(\rho_\ell \) is the density of liquid water, into this last expression, we obtain

\[r \frac{dr}{dt} = \frac{D}{\rho_\ell} [\rho_v(\infty) - \rho_v(r)] \]
Finally, using the ideal gas equation for water vapour,

\[r \frac{dr}{dt} = \frac{D \rho_v(\infty)}{\rho_L} \frac{e(\infty) - e(r)}{e(\infty)} \]
Finally, using the ideal gas equation for water vapour,

\[r \frac{dr}{dt} = \frac{D \rho_v(\infty) \ e(\infty) - e(r)}{\rho_\ell \ e(\infty)} \]

Here \(e(\infty) \) is the water vapour pressure in the ambient air well removed from the droplet and \(e(r) \) is the vapour pressure adjacent to the droplet.
Finally, using the ideal gas equation for water vapour,
\[r \frac{dr}{dt} = \frac{D \rho_v(\infty)}{\rho_\ell} \frac{e(\infty) - e(r)}{e(\infty)} \]

Here \(e(\infty) \) is the water vapour pressure in the ambient air well removed from the droplet and \(e(r) \) is the vapour pressure adjacent to the droplet.

If \(e \) is not too different from \(e_s \), then
\[\frac{e(\infty) - e(r)}{e(\infty)} \approx \frac{e(\infty) - e_s}{e_s} = \left(\frac{e(\infty)}{e_s} - 1 \right) = S \]

where \(S \) is the supersaturation of the ambient air (expressed as a fraction rather than a percentage).
Finally, using the ideal gas equation for water vapour,

\[r \frac{dr}{dt} = \frac{D \rho_v(\infty) e(\infty) - e(r)}{\rho_\ell} \]

Here \(e(\infty) \) is the water vapour pressure in the ambient air well removed from the droplet and \(e(r) \) is the vapour pressure adjacent to the droplet.

If \(e \) is not too different from \(e_s \), then

\[\frac{e(\infty) - e(r)}{e(\infty)} \approx \frac{e(\infty) - e_s}{e_s} = \left(\frac{e(\infty)}{e_s} - 1 \right) = S \]

where \(S \) is the supersaturation of the ambient air (expressed as a fraction rather than a percentage).

Hence, we get

\[r \frac{dr}{dt} = G_\ell S \]

where \(G_\ell = D \rho_v(\infty)/\rho_\ell \).
Again,

\[r \frac{dr}{dt} = G_\ell S \]

where \(G_\ell = \frac{D\rho_v(\infty)}{\rho_\ell} \), which is constant for a given environment.
Again,

\[r \frac{dr}{dt} = G_\ell S \]

where \(G_\ell = \frac{D \rho_v(\infty)}{\rho_\ell} \), which is constant for a given environment.

It can be seen from this that, for fixed values of \(G_\ell \) and the supersaturation \(S \), the rate of increase \(dr/dt \) is inversely proportional to the radius \(r \) of the droplet.
Again,

\[\frac{dr}{dt} = G_\ell S \]

where \(G_\ell = \frac{D \rho_v(\infty)}{\rho_\ell} \), which is constant for a given environment.

It can be seen from this that, for fixed values of \(G_\ell \) and the supersaturation \(S \), the rate of increase \(\frac{dr}{dt} \) is inversely proportional to the radius \(r \) of the droplet.

We write

\[r \, dr = G_\ell S \, dt \]

which can be integrated immediately to give

\[r = \sqrt{2G_\ell St} \quad \text{so that} \quad r \propto t^{1/2} \]
Again,

\[r \frac{dr}{dt} = G_\ell S \]

where \(G_\ell = D\rho_v(\infty)/\rho_\ell \), which is constant for a given environment.

It can be seen from this that, for fixed values of \(G_\ell \) and the supersaturation \(S \), the rate of increase \(dr/dt \) is inversely proportional to the radius \(r \) of the droplet.

We write

\[r \, dr = G_\ell S \, dt \]

which can be integrated immediately to give

\[r = \sqrt{2G_\ell St} \quad \text{so that} \quad r \propto t^{1/2} \]

Thus, droplets growing by condensation initially increase in radius very rapidly but their rate of growth diminishes with time (see following figure).
Schematic curves of droplet growth (a) by condensation from the vapour phase (blue curve) and (b) by collection of droplets (red curve).
Since the rate of growth of a droplet by condensation is inversely proportional to its radius, the smaller activated droplets grow faster than the larger droplets.
Since the rate of growth of a droplet by condensation is inversely proportional to its radius, the *smaller activated droplets grow faster than the larger droplets*.

Consequently, in this simplified model, the sizes of the droplets in the cloud become *increasingly uniform with time* (that is, the droplets approach a *monodispersed distribution*).
Since the rate of growth of a droplet by condensation is inversely proportional to its radius, the smaller activated droplets grow faster than the larger droplets.

Consequently, in this simplified model, the sizes of the droplets in the cloud become increasingly uniform with time (that is, the droplets approach a monodispersed distribution).

Comparisons of cloud droplet size distributions measured a few hundred meters above the bases of non-precipitating warm cumulus clouds with droplet size distributions computed assuming growth by condensation for about 5 min show good agreement (figure follows).
Cloud droplet size distribution measured 244 m above the base of a warm cumulus cloud (red) and the corresponding computed droplet size distribution assuming growth by condensation only (blue).
Note that the droplets produced by condensation during this time period only extend up to about \(10 \mu m\) in radius.
Note that the droplets produced by condensation during this time period only extend up to about $10\,\mu m$ in radius. Moreover, the rate of increase in the radius of a droplet growing by condensation decreases with time.
Note that the droplets produced by condensation during this time period only extend up to about $10\,\mu$m in radius. Moreover, the rate of increase in the radius of a droplet growing by condensation decreases with time. It is clear, therefore, as first noted by Reynolds in 1877, that growth by condensation alone in warm clouds is much too slow to produce raindrops with radii of several millimeters.
Note that the droplets produced by condensation during this time period only extend up to about $10\,\mu\text{m}$ in radius. Moreover, the rate of increase in the radius of a droplet growing by condensation decreases with time.

It is clear, therefore, as first noted by Reynolds in 1877, that growth by condensation alone in warm clouds is much too slow to produce raindrops with radii of several millimeters. Yet, rain does form in warm clouds!!!
Note that the droplets produced by condensation during this time period only extend up to about $10 \mu m$ in radius. Moreover, the rate of increase in the radius of a droplet growing by condensation decreases with time.

It is clear, therefore, as first noted by Reynolds in 1877, that growth by condensation alone in warm clouds is much too slow to produce raindrops with radii of several millimeters. **Yet, rain does form in warm clouds!!!**

For a cloud droplet $10 \mu m$ in radius to grow to a raindrop $1 mm$ in radius, an increase in volume of **one millionfold** is required! However, only about one droplet in a million (about 1 liter^{-1}) in a cloud has to grow by this amount for the cloud to rain.
Note that the droplets produced by condensation during this time period only extend up to about $10 \, \mu m$ in radius.

Moreover, the rate of increase in the radius of a droplet growing by condensation decreases with time.

It is clear, therefore, as first noted by Reynolds in 1877, that growth by condensation alone in warm clouds is much too slow to produce raindrops with radii of several millimeters.

Yet, rain does form in warm clouds!!

For a cloud droplet $10 \, \mu m$ in radius to grow to a raindrop $1 \, mm$ in radius, an increase in volume of one millionfold is required! However, only about one droplet in a million (about $1 \, \text{liter}^{-1}$) in a cloud has to grow by this amount for the cloud to rain.

The enormous increases in size required to transform cloud droplets into raindrops is illustrated by the next diagram.
Relative sizes of cloud droplets and raindrops; \(r \) is the radius in micrometers, \(n \) the number per liter of air, and \(v \) the terminal fall speed in centimeters per second.
(B) Growth by Collection

In warm clouds the growth of some droplets from the relatively small sizes achieved by condensation to the sizes of raindrops is achieved by the *collision* and *coalescence* of droplets.
(B) Growth by Collection

In warm clouds the growth of some droplets from the relatively small sizes achieved by condensation to the sizes of raindrops is achieved by the *collision* and *coalescence* of droplets.

Since the *terminal fall speed* increases with the size of the droplet, larger droplets have a higher than average terminal fall speed.
(B) Growth by Collection

In warm clouds the growth of some droplets from the relatively small sizes achieved by condensation to the sizes of raindrops is achieved by the collision and coalescence of droplets.

Since the terminal fall speed increases with the size of the droplet, larger droplets have a higher than average terminal fall speed.

Thus, they will collide with smaller droplets lying in their paths.
Was Galileo correct?
Was Galileo correct?

By dropping objects of different masses from the leaning tower of Pisa, Galileo showed that freely falling bodies with different masses fall through a given distance in the same time.
Was Galileo correct?

By dropping objects of different masses from the leaning tower of Pisa, Galileo showed that freely falling bodies with different masses fall through a given distance in the same time.

However, this is true only if the force acting on the body due to gravity is *much greater* than the frictional drag on the body due to the air, and if the density of the body is much greater than the density of air.
Was Galileo correct?

By dropping objects of different masses from the leaning tower of Pisa, Galileo showed that freely falling bodies with different masses fall through a given distance in the same time.

However, this is true only if the force acting on the body due to gravity is much greater than the frictional drag on the body due to the air, and if the density of the body is much greater than the density of air.

Consider, the more general case of a body of density ρ' and volume V falling through still air of density ρ.
Was Galileo correct?

By dropping objects of different masses from the leaning tower of Pisa, Galileo showed that freely falling bodies with different masses fall through a given distance in the same time.

However, this is true only if the force acting on the body due to gravity is \textit{much greater} than the frictional drag on the body due to the air, and if the density of the body is much greater than the density of air.

Consider, the more general case of a body of density ρ' and volume V falling through still air of density ρ.

The downward force acting on the body due to gravity is $\rho'Vg$.
Was Galileo correct?

By dropping objects of different masses from the leaning tower of Pisa, Galileo showed that freely falling bodies with different masses fall through a given distance in the same time.

However, this is true only if the force acting on the body due to gravity is *much greater* than the frictional drag on the body due to the air, and if the density of the body is much greater than the density of air.

Consider, the more general case of a body of density ρ' and volume V falling through still air of density ρ.

The downward force acting on the body due to gravity is $\rho'Vg$.

The upward buoyancy force on the body, due to the mass of air displaced by the body, is ρVg (by Archimedes’ Principle).
Was Galileo correct?

By dropping objects of different masses from the leaning tower of Pisa, Galileo showed that freely falling bodies with different masses fall through a given distance in the same time.

However, this is true only if the force acting on the body due to gravity is *much greater* than the frictional drag on the body due to the air, and if the density of the body is much greater than the density of air.

Consider, the more general case of a body of density ρ' and volume V falling through still air of density ρ.

The downward force acting on the body due to gravity is $\rho'Vg$.

The upward buoyancy force on the body, due to the mass of air displaced by the body, is $\rho V g$ (by Archimedes’ Principle).

In addition, the air exerts a *drag force* F_{drag} on the body, which acts upwards.
The body will attain a steady terminal fall speed when these three forces are in balance:

$$\rho' V g = \rho V g + F_{\text{drag}}$$
The body will attain a steady terminal fall speed when these three forces are in balance:

\[\rho' V g = \rho V g + F_{\text{drag}} \]

If the body is a sphere of radius \(r \) then

\[\frac{4}{3} \pi r^3 g (\rho' - \rho) = F_{\text{drag}} \]
The body will attain a steady terminal fall speed when these three forces are in balance:

\[\rho' V g = \rho V g + F_{\text{drag}} \]

If the body is a sphere of radius \(r \) then

\[\frac{4}{3} \pi r^3 g (\rho' - \rho) = F_{\text{drag}} \]

Stokes’ drag force: For spheres with radius \(\leq 20 \mu m \),

\[F_{\text{drag}} = 6\pi \eta rv \]

where \(v \) is the terminal fall speed of the body and \(\eta \) the viscosity of the air.
The body will attain a steady terminal fall speed when these three forces are in balance:

\[\rho' V g = \rho V g + F_{\text{drag}} \]

If the body is a sphere of radius \(r \) then

\[\frac{4}{3} \pi r^3 g (\rho' - \rho) = F_{\text{drag}} \]

Stokes’ drag force: For spheres with radius \(\leq 20 \mu\text{m} \),

\[F_{\text{drag}} = 6 \pi \eta rv \]

where \(v \) is the terminal fall speed of the body and \(\eta \) the viscosity of the air.

From the above equations, it follows that

\[v = \frac{2 g (\rho' - \rho) r^2}{9 \eta} \]
If $\rho' \gg \rho$, which it is for liquid and solid objects,

$$v = \frac{2g\rho'r^2}{9\eta}$$
If $\rho' \gg \rho$, which it is for liquid and solid objects,

$$v = \frac{2g\rho'r^2}{9\eta}$$

The terminal fall speeds of 10 and 20 μm radius water droplets in air at 1013 hPa and 20°C are 0.3 and 1.2 cm s$^{-1}$ respectively.
If $\rho' \gg \rho$, which it is for liquid and solid objects,

$$v = \frac{2 g \rho' r^2}{9 \eta}$$

The terminal fall speeds of 10 and 20 μm radius water droplets in air at 1013 hPa and 20°C are 0.3 and 1.2 cm s$^{-1}$ respectively.

The terminal fall speed of a water droplet with radius 40 μm is 4.7 cm s$^{-1}$, which is about 10% less than given by the above equation.
If $\rho' \gg \rho$, which it is for liquid and solid objects,

$$v = \frac{2g\rho' r^2}{9\eta}$$

The terminal fall speeds of 10 and 20 μm radius water droplets in air at 1013 hPa and 20°C are 0.3 and 1.2 cm s$^{-1}$ respectively.

The terminal fall speed of a water droplet with radius 40 μm is 4.7 cm s$^{-1}$, which is about 10% less than given by the above equation.

Water drops of radius 100 μm, 1 mm and 4 mm have terminal fall speeds of 25.6, 403 and 883 cm s$^{-1}$ respectively, which are very much less than given by the equation.
If $\rho' \gg \rho$, which it is for liquid and solid objects,

$$v = \frac{2 g \rho' r^2}{9 \eta}$$

The terminal fall speeds of 10 and 20 μm radius water droplets in air at 1013 hPa and 20$^\circ$C are 0.3 and 1.2 cm s$^{-1}$ respectively.

The terminal fall speed of a water droplet with radius 40 μm is 4.7 cm s$^{-1}$, which is about 10% less than given by the above equation.

Water drops of radius 100 μm, 1 mm and 4 mm have terminal fall speeds of 25.6, 403 and 883 cm s$^{-1}$ respectively, which are very much less than given by the equation.

This is because as a drop increases in size it becomes increasingly non-spherical and has an increasing wake. This gives rise to a drag force that is much greater than that given above.
Collision and Coalescence

Consider a single drop of radius r_1 that is overtaking a smaller droplet of radius r_2.
Consider a single drop of radius r_1 that is overtaking a smaller droplet of radius r_2.

As the collector drop approaches the droplet, the latter will tend to follow the streamlines around the collector drop and thereby might avoid capture.
Consider a single drop of radius r_1 that is overtaking a smaller droplet of radius r_2.

As the collector drop approaches the droplet, the latter will tend to follow the streamlines around the collector drop and thereby might avoid capture.

The *collision efficiency* E of a droplet of radius r_2 with a drop of radius r_1 is defined as

$$E = \frac{y^2}{(r_1 + r_2)^2}$$

where y is the distance from the central line for which the droplet just makes a grazing collision with the large drop (see Figure).
Relative motion of a small droplet (blue) with respect to a collector drop (red). y is the maximum impact parameter for a droplet (radius r_2) with a collector drop (radius r_1).
The next issue is whether or not a droplet is captured (i.e., does *coalescence* occur?) when it collides with a larger drop. Droplets can bounce off one another or off a plane surface of water, as illustrated below.
The next issue is whether or not a droplet is captured (i.e., does *coalescence* occur?) when it collides with a larger drop. Droplets can bounce off one another or off a plane surface of water, as illustrated below.

This occurs when air becomes trapped between the colliding surfaces, so that they deform without actually touching. In effect, the droplet rebound$. The next issue is whether or not a droplet is captured (i.e., does *coalescence* occur?) when it collides with a larger drop. Droplets can bounce off one another or off a plane surface of water, as illustrated below.

This occurs when air becomes trapped between the colliding surfaces, so that they deform without actually touching. In effect, the droplet rebounds on a cushion of air.
The next issue is whether or not a droplet is captured (i.e., does \textit{coalescence} occur?) when it collides with a larger drop. Droplets can bounce off one another or off a plane surface of water, as illustrated below.

This occurs when air becomes trapped between the colliding surfaces, so that they deform without actually touching. In effect, the droplet rebounds on a cushion of air.

\begin{itemize}
 \item \textbf{Left:} A stream of water droplets, about 100 \(\mu\text{m}\) in diameter, rebounding from a plane surface of water.
 \item \textbf{Right:} When the angle between the stream of droplets and the surface of the water is increased beyond a critical value, the droplets coalesce with the water.
\end{itemize}
The *coalescence efficiency* E' of a droplet of radius r_2 with a drop of radius r_1 is defined as the fraction of collisions that result in a coalescence.
The *coalescence efficiency* E' of a droplet of radius r_2 with a drop of radius r_1 is defined as the fraction of collisions that result in a coalescence.

The *collection efficiency* E_c is equal to EE'.

* * *
The coalescence efficiency E' of a droplet of radius r_2 with a drop of radius r_1 is defined as the fraction of collisions that result in a coalescence.

The collection efficiency E_c is equal to EE'.

Let us now consider a collector drop of radius r_1 that has a terminal fall speed v_1.
The coalescence efficiency E' of a droplet of radius r_2 with a drop of radius r_1 is defined as the fraction of collisions that result in a coalescence.

The collection efficiency E_c is equal to EE'.

Let us now consider a collector drop of radius r_1 that has a terminal fall speed v_1.

Let us suppose that this drop is falling in still air through a cloud of equal sized droplets of radius r_2 with terminal fall speed v_2.
The coalescence efficiency E' of a droplet of radius r_2 with a drop of radius r_1 is defined as the fraction of collisions that result in a coalescence.

The collection efficiency E_c is equal to EE'.

Let us now consider a collector drop of radius r_1 that has a terminal fall speed v_1.

Let us suppose that this drop is falling in still air through a cloud of equal sized droplets of radius r_2 with terminal fall speed v_2.

We will assume that the droplets are uniformly distributed in space and that they are collected uniformly at the same rate by all collector drops of a given size.
The *coalescence efficiency* E' of a droplet of radius r_2 with a drop of radius r_1 is defined as the fraction of collisions that result in a coalescence.

The *collection efficiency* E_c is equal to EE'.

Let us now consider a collector drop of radius r_1 that has a terminal fall speed v_1.

Let us suppose that this drop is falling in still air through a cloud of equal sized droplets of radius r_2 with terminal fall speed v_2.

We will assume that the droplets are uniformly distributed in space and that they are collected uniformly at the same rate by all collector drops of a given size.

This so-called *continuous collection model* is illustrated in the following diagram.
Schematic to illustrate the continuous collection model for the growth of a cloud drop by collisions and coalescence.
The rate of increase in mass M of the large drop due to collisions is given by

$$\frac{dM}{dt} = \pi r_1^2 (v_1 - v_2) w_\ell E_c$$

where w_ℓ is the LWC (in kg m$^{-3}$) of the cloud droplets of radius r_2.
The *rate of increase in mass* \(M \) of the large drop due to collisions is given by

\[
\frac{dM}{dt} = \pi r_1^2 (v_1 - v_2) w_\ell E_c
\]

where \(w_\ell \) is the LWC (in kg m\(^{-3}\)) of the cloud droplets of radius \(r_2 \).

Substituting \(M = \frac{4}{3} \pi r_1^3 \rho_\ell \) here, where \(\rho_\ell \) is the density of liquid water, we obtain

\[
\frac{dr_1}{dt} = \frac{(v_1 - v_2) w_\ell E_c}{4 \rho_\ell}
\]
The *rate of increase in mass* M of the large drop due to collisions is given by

$$\frac{dM}{dt} = \pi r_1^2 (v_1 - v_2) w_\ell E_c$$

where w_ℓ is the LWC (in kg m$^{-3}$) of the cloud droplets of radius r_2.

Substituting $M = \frac{4}{3} \pi r_1^3 \rho_\ell$ here, where ρ_ℓ is the density of liquid water, we obtain

$$\frac{dr_1}{dt} = \frac{(v_1 - v_2) w_\ell E_c}{4 \rho_\ell}$$

If $v_1 \gg v_2$ and we assume that the coalescence efficiency is unity, then

$$\frac{dr_1}{dt} = \frac{v_1 w_\ell E}{4 \rho_\ell}$$
The *rate of increase in mass* M of the large drop due to collisions is given by

$$\frac{dM}{dt} = \pi r_1^2(v_1 - v_2)w_\ell E_c$$

where w_ℓ is the LWC (in kg m$^{-3}$) of the cloud droplets of radius r_2.

Substituting $M = \frac{4}{3} \pi r_1^3 \rho_\ell$ here, where ρ_ℓ is the density of liquid water, we obtain

$$\frac{dr_1}{dt} = \frac{(v_1 - v_2)w_\ell E_c}{4\rho_\ell}$$

If $v_1 \gg v_2$ and we assume that the coalescence efficiency is unity, then

$$\frac{dr_1}{dt} = \frac{v_1 w_\ell E}{4\rho_\ell}$$

Since v_1 and E both increase as r_1 increases, it follows that dr_1/dt increases with increasing r_1; that is, the growth of a drop by collection is an *accelerating process*.
Schematic curves of droplet growth (a) by condensation from the vapour phase (blue curve) and (b) by collection of droplets (red curve).
This “accelerating” behavior is illustrated by the red curve in the figure above, which indicates negligible growth by collection until the collector drop has reached a radius of about 20\(\mu m\).
This “accelerating” behavior is illustrated by the red curve in the figure above, which indicates negligible growth by collection until the collector drop has reached a radius of about 20 µm.

It can be seen from the Figure that for small cloud droplets growth by condensation is initially dominant but, beyond a certain radius, growth by collection dominates and rapidly accelerates.
This “accelerating” behavior is illustrated by the red curve in the figure above, which indicates negligible growth by collection until the collector drop has reached a radius of about 20 µm.

It can be seen from the Figure that for small cloud droplets growth by condensation is initially dominant but, beyond a certain radius, growth by collection dominates and rapidly accelerates.

Eventually, as the drop grows, v_1 becomes greater than the updraft velocity w and the drop begins to fall through the updraft and will eventually pass through the cloud base and may reach the ground as a raindrop.
This “accelerating” behavior is illustrated by the red curve in the figure above, which indicates negligible growth by collection until the collector drop has reached a radius of about 20 µm.

It can be seen from the Figure that for small cloud droplets growth by condensation is initially dominant but, beyond a certain radius, growth by collection dominates and rapidly accelerates.

Eventually, as the drop grows, v_1 becomes greater than the updraft velocity w and the drop begins to fall through the updraft and will eventually pass through the cloud base and may reach the ground as a raindrop.

Provided that a few drops are large enough to be reasonably efficient collectors (i.e., with radius $\geq 20 \mu m$), and the cloud is deep enough and contains sufficient liquid water, raindrops should grow within reasonable time periods (~ 1 hour).
This “accelerating” behavior is illustrated by the red curve in the figure above, which indicates negligible growth by collection until the collector drop has reached a radius of about 20 µm.

It can be seen from the Figure that for small cloud droplets growth by condensation is initially dominant but, beyond a certain radius, growth by collection dominates and rapidly accelerates.

Eventually, as the drop grows, v_1 becomes greater than the updraft velocity w and the drop begins to fall through the updraft and will eventually pass through the cloud base and may reach the ground as a raindrop.

Provided that a few drops are large enough to be reasonably efficient collectors (i.e., with radius $\geq 20 \mu m$), and the cloud is deep enough and contains sufficient liquid water, raindrops should grow within reasonable time periods (~ 1 hour).

Clearly, deep clouds with strong updrafts should produce rain quicker than shallower clouds with weak updrafts.
Computer simulation

Much of what is currently known about both dynamical and microphysical cloud processes can be incorporated into computer models and numerical experiments can be carried out.
Much of what is currently known about both dynamical and microphysical cloud processes can be incorporated into computer models and numerical experiments can be carried out.

Numerical predictions of the mass spectrum of drops in (a) a warm marine cumulus cloud, and (b) a warm continental cumulus cloud after about one hour of growth.
The Figure above illustrates the effects of these differences in cloud microstructures on the development of larger drops.
The Figure above illustrates the effects of these differences in cloud microstructures on the development of larger drops. The CCN spectra used as input data to the two clouds were based on measurements, with the continental air having much higher concentrations of CCN than the marine air (about 200 versus 45 cm$^{-3}$ at 0.2% supersaturation).
The Figure above illustrates the effects of these differences in cloud microstructures on the development of larger drops. The CCN spectra used as input data to the two clouds were based on measurements, with the continental air having much higher concentrations of CCN than the marine air (about 200 versus 45 cm$^{-3}$ at 0.2% supersaturation).

It can be seen that the cumulus cloud in marine air develops some drops between 100 and 1000 μm in radius (that is, *raindrops*), whereas, the continental cloud does not contain any droplets greater than about 20 μm in radius.
The Figure above illustrates the effects of these differences in cloud microstructures on the development of larger drops. The CCN spectra used as input data to the two clouds were based on measurements, with the continental air having much higher concentrations of CCN than the marine air (about 200 versus 45 cm\(^{-3}\) at 0.2% supersaturation).

It can be seen that the cumulus cloud in marine air develops some drops between 100 and 1000 \(\mu\)m in radius (that is, raindrops), whereas, the continental cloud does not contain any droplets greater than about 20 \(\mu\)m in radius.

These markedly different developments are attributable to the fact that the marine cloud contains a small number of drops that are large enough to grow by collection, whereas the continental cloud does not.
The Figure above illustrates the effects of these differences in cloud microstructures on the development of larger drops. The CCN spectra used as input data to the two clouds were based on measurements, with the continental air having much higher concentrations of CCN than the marine air (about 200 versus 45 cm$^{-3}$ at 0.2% supersaturation).

It can be seen that the cumulus cloud in marine air develops some drops between 100 and 1000 μm in radius (that is, raindrops), whereas, the continental cloud does not contain any droplets greater than about 20 μm in radius.

These markedly different developments are attributable to the fact that the marine cloud contains a small number of drops that are large enough to grow by collection, whereas the continental cloud does not.

These model results support the observation that a marine cumulus cloud is more likely to rain than a continental cumulus cloud with similar updraft velocity, LWC and depth.
Shape and Size of Raindrops
Raindrops in free fall are often depicted as tear-shaped.
Raindrops in free fall are often depicted as tear-shaped. In fact, as a drop increases in size above about 1 mm in radius it becomes flattened on its underside in free fall, and it gradually changes in shape from essentially spherical to increasingly resemble a parachute (or jellyfish).
Raindrops in free fall are often depicted as tear-shaped. In fact, as a drop increases in size above about 1 mm in radius it becomes flattened on its underside in free fall, and it gradually changes in shape from essentially spherical to increasingly resemble a parachute (or jellyfish).

If the initial radius of the drop exceeds about 2.5 mm, the shape becomes a large inverted bag, with a toroidal ring of water around its lower rim.
Raindrops in free fall are often depicted as tear-shaped. In fact, as a drop increases in size above about 1 mm in radius it becomes flattened on its underside in free fall, and it gradually changes in shape from essentially spherical to increasingly resemble a parachute (or jellyfish).

If the initial radius of the drop exceeds about 2.5 mm, the shape becomes a large inverted bag, with a toroidal ring of water around its lower rim.

Laboratory and theoretical studies indicate that when the bag bursts, it produces a fine spray of droplets and the toroidal ring breaks up into a number of large drops (see Figure to follow).
Sequence of high-speed photographs showing how a large drop in free fall forms a parachute-like shape with a toroidal ring of water around its lower rim. Time interval between photographs = 1 ms.
The largest raindrops ever observed have diameters of about 0.8 – 1 cm. Drops larger than this must be dynamically unstable.
The largest raindrops ever observed have diameters of about 0.8 – 1 cm. Drops larger than this must be dynamically unstable.

Measurements of the size distributions of raindrops that reach the ground can often be fitted to an expression, known as the *Marshall-Palmer* distribution, which is of the form

\[N(D) = N_0 \exp(-\Lambda D) \]
The largest raindrops ever observed have diameters of about 0.8 – 1 cm. Drops larger than this must be dynamically unstable.

Measurements of the size distributions of raindrops that reach the ground can often be fitted to an expression, known as the *Marshall-Palmer* distribution, which is of the form

\[
N(D) = N_0 \exp(-\Lambda D)
\]

Here, \(N(D)dD\) is the number of drops per unit volume with diameters between \(D\) and \(D+dD\), and \(N_0\) and \(\Lambda\) are empirical fitting parameters.
The largest raindrops ever observed have diameters of about 0.8 – 1 cm. Drops larger than this must be dynamically unstable.

Measurements of the size distributions of raindrops that reach the ground can often be fitted to an expression, known as the *Marshall-Palmer* distribution, which is of the form

\[N(D) = N_0 \exp(-\Lambda D) \]

Here, \(N(D) \, dD \) is the number of drops per unit volume with diameters between \(D \) and \(D + dD \), and \(N_0 \) and \(\Lambda \) are empirical fitting parameters.

The value of \(N_0 \) tends to be constant, but \(\Lambda \) varies with the rainfall rate.
The largest raindrops ever observed have diameters of about 0.8 – 1 cm. Drops larger than this must be dynamically unstable.

Measurements of the size distributions of raindrops that reach the ground can often be fitted to an expression, known as the Marshall-Palmer distribution, which is of the form

\[N(D) = N_0 \exp(-\Lambda D) \]

Here, \(N(D)dD \) is the number of drops per unit volume with diameters between \(D \) and \(D+dD \), and \(N_0 \) and \(\Lambda \) are empirical fitting parameters.

The value of \(N_0 \) tends to be constant, but \(\Lambda \) varies with the rainfall rate.

⋆ ⋆ ⋆

Zipf’s Law: In the English language, the probability of encountering the \(n \)th most common word is given roughly by \(P(n) = 0.1/n \) for \(n \) up to 1000 or so. The law breaks down for less frequent words, since the harmonic series diverges.