§5.5: Ekman Pumping
Effective Depth of Ekman Layer.
Defining $\gamma = \sqrt{f/2K}$, we derived the solution

$$u = u_g (1 - e^{-\gamma z} \cos \gamma z)$$
$$v = u_g e^{-\gamma z} \sin \gamma z$$

corresponding to the **Ekman spiral**.
Defining $\gamma = \sqrt{f/2K}$, we derived the solution

$$u = u_g (1 - e^{-\gamma z} \cos \gamma z)$$

$$v = u_g e^{-\gamma z} \sin \gamma z$$

corresponding to the *Ekman spiral*.

Let us assume the values $f = 10^{-4} \text{ s}^{-1}$ and $K = 5 \text{ m}^2\text{s}^{-1}$.
Defining $\gamma = \sqrt{f/2K}$, we derived the solution

$$u = u_g(1 - e^{-\gamma z} \cos \gamma z)$$
$$v = u_g e^{-\gamma z} \sin \gamma z$$

corresponding to the **Ekman spiral**.

Let us assume the values $f = 10^{-4} \text{ s}^{-1}$ and $K = 5 \text{ m}^2\text{s}^{-1}$.

The **effective depth** is $D = \pi / \gamma$.
Defining $\gamma = \sqrt{f/2K}$, we derived the solution

$$u = u_g (1 - e^{-\gamma z} \cos \gamma z)$$
$$v = u_g e^{-\gamma z} \sin \gamma z$$

corresponding to the **Ekman spiral**.

Let us assume the values $f = 10^{-4} \text{ s}^{-1}$ and $K = 5 \text{ m}^2 \text{s}^{-1}$.

The **effective depth** is $D = \frac{\pi}{\gamma}$.

With $f = 10^{-4} \text{ s}^{-1}$ and $K = 5 \text{ m}^2 \text{s}^{-1}$ we have

$$D = \frac{\pi}{\gamma} = \pi \sqrt{\frac{2K}{f}} = \pi \sqrt{\frac{2 \times 5}{10^{-4}}} = 993 \text{ m} \approx 1 \text{ km}$$

Thus, the effective depth of the Ekman boundary layer is about one kilometre.
Defining $\gamma = \sqrt{f/2K}$, we derived the solution

\[
\begin{align*}
 u &= u_g(1 - e^{-\gamma z} \cos \gamma z) \\
 v &= u_g e^{-\gamma z} \sin \gamma z
\end{align*}
\]

corresponding to the **Ekman spiral**.

Let us assume the values $f = 10^{-4} \text{ s}^{-1}$ and $K = 5 \text{ m}^2\text{s}^{-1}$.

The **effective depth** is $D = \pi / \gamma$.

With $f = 10^{-4} \text{ s}^{-1}$ and $K = 5 \text{ m}^2\text{s}^{-1}$ we have

\[
D = \frac{\pi}{\gamma} = \pi \sqrt{\frac{2K}{f}} = \pi \sqrt{\frac{2 \times 5}{10^{-4}}} = 993 \text{ m} \approx 1 \text{ km}
\]

Thus, the effective depth of the Ekman boundary layer is about one kilometre.

Note that D depends on the values of f and K so the particular value 1 km is more an indication of the scale that a sharp quantitative estimate.
Remarks on the Ekman Spiral
• The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations.
Remarks on the Ekman Spiral

- The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations.

- Better agreement can be obtained by coupling the Ekman layer to a surface layer where the wind direction is unchanging and the speed varies logarithmically.
Remarks on the Ekman Spiral

• The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations.

• Better agreement can be obtained by coupling the Ekman layer to a surface layer where the wind direction is unchanging and the speed varies logarithmically.

• This can be done by taking a boundary condition:

\[V \parallel \frac{\partial V}{\partial z} \quad @ \quad z = z_B \]
Remarks on the Ekman Spiral

- The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations.

- Better agreement can be obtained by coupling the Ekman layer to a surface layer where the wind direction is unchanging and the speed varies logarithmically.

- This can be done by taking a boundary condition

\[\mathbf{V} \parallel \frac{\partial \mathbf{V}}{\partial z} \quad @ \quad z = z_B \]

- The solution is then called a *modified Ekman spiral.*
Remarks on the Ekman Spiral

• The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations.

• Better agreement can be obtained by coupling the Ekman layer to a surface layer where the wind direction is unchanging and the speed varies logarithmically.

• This can be done by taking a boundary condition

\[V \parallel \frac{\partial V}{\partial z} @ z = z_B \]

• The solution is then called a *modified Ekman spiral*.

The modified Ekman Layer is discussed on Holton (§5.3.6). We will not discuss it here.
The Ekman solution implies **cross-isobar flow** in the Planetary Boundary Layer (PBL).
Vertical Velocity

The Ekman solution implies cross-isobar flow in the Planetary Boundary Layer (PBL).

The flow is consistently towards lower pressure.
The Ekman solution implies **cross-isobar flow** in the Planetary Boundary Layer (PBL). The flow is consistently **towards lower pressure**.
For a **steady-state solution**, the convergence towards lower pressure centres and divergence from higher pressure centres has two implications:
For a **steady-state solution**, the convergence towards lower pressure centres and divergence from higher pressure centres has two implications:

- There must be **upward velocity** at the top of the PBL in regions of low pressure.
For a **steady-state solution**, the convergence towards lower pressure centres and divergence from higher pressure centres has two implications:

- There must be **upward velocity** at the top of the PBL in regions of low pressure.
- There must be **downward velocity** at the top of the PBL in regions of high pressure.
For a steady-state solution, the convergence towards lower pressure centres and divergence from higher pressure centres has two implications:

- There must be upward velocity at the top of the PBL in regions of low pressure.
- There must be downward velocity at the top of the PBL in regions of high pressure.

These implications follow from consideration of the conservation of mass.
For a steady-state solution, the convergence towards lower pressure centres and divergence from higher pressure centres has two implications:

- There must be **upward velocity** at the top of the PBL in regions of low pressure.
- There must be **downward velocity** at the top of the PBL in regions of high pressure.

These implications follow from consideration of the conservation of mass.

We will now calculate the vertical velocity at the top of the Ekman layer.
First, consider a purely zonal geostrophic flow. So the isobars are oriented in an east-west direction.
First, consider a purely zonal geostrophic flow. So the isobars are oriented in an east-west direction.

The cross-isobar mass transport per unit area in the planetary boundary layer (PBL) is just $\rho_0 u$ (kg m$^{-2}$ s$^{-1}$).
First, consider a purely zonal geostrophic flow. So the isobars are oriented in an east-west direction.

The cross-isobar mass transport per unit area in the planetary boundary layer (PBL) is just $\rho_0 v$ ($\text{kg m}^{-2}\text{s}^{-1}$).

The cross-isobar mass transport through a column of unit width extending through the entire PBL is the vertical integral of $\rho_0 v$ through the layer $z = 0$ to $z = D = \pi/\gamma$:

$$M = \int_0^D \rho_0 v \, dz \quad (\text{kg m}^{-1}\text{s}^{-1})$$
First, consider a purely zonal geostrophic flow. So the isobars are oriented in an east-west direction.

The cross-isobar mass transport per unit area in the planetary boundary layer (PBL) is just $\rho_0 v$ (kg m$^{-2}$s$^{-1}$).

The cross-isobar mass transport through a column of unit width extending through the entire PBL is the vertical integral of $\rho_0 v$ through the layer $z = 0$ to $z = D = \pi/\gamma$:

$$M = \int_0^D \rho_0 v \, dz \quad \text{(kg m}^{-1}\text{s}^{-1})$$

Now substitute the Ekman solution for v:

$$v = u g e^{-\gamma z} \sin(\gamma z) = u g e^{-\pi z/D} \sin(\pi z/D)$$
First, consider a purely zonal geostrophic flow. So the isobars are oriented in an east-west direction.

The cross-isobar mass transport per unit area in the planetary boundary layer (PBL) is just $\rho_0 v$ (kg m$^{-2}$s$^{-1}$).

The cross-isobar mass transport through a column of unit width extending through the entire PBL is the vertical integral of $\rho_0 v$ through the layer $z = 0$ to $z = D = \pi/\gamma$:

$$M = \int_0^D \rho_0 v \, dz \quad \text{(kg m$^{-1}$s$^{-1}$)}$$

Now substitute the Ekman solution for v:

$$v = u_g e^{-\gamma z} \sin(\gamma z) = u_g e^{-\pi z/D} \sin(\pi z/D)$$

The result is thus

$$M = \int_0^D \rho_0 u_g \exp(-\pi z/D) \sin(\pi z/D) \, dz$$
Since ρ_0 and u_g are assumed to be constant, we have

$$M = \rho_0 u_g \int_0^D \exp(-\pi z/D) \sin(\pi z/D) \, dz$$
Since ρ_0 and u_g are assumed to be constant, we have

$$M = \rho_0 u_g \int_0^D \exp(-\pi z/D) \sin(\pi z/D) \, dz$$

Defining a new vertical variable $Z = \pi z/D$, this is

$$M = \rho_0 u_g \left(\frac{D}{\pi} \right) \int_0^\pi \exp(-Z) \sin Z \, dZ$$
Since ρ_0 and u_g are assumed to be constant, we have

$$M = \rho_0 u_g \int_0^D \exp(-\pi z/D) \sin(\pi z/D) \, dz$$

Defining a new vertical variable $Z = \pi z/D$, this is

$$M = \rho_0 u_g \left(\frac{D}{\pi} \right) \int_0^\pi \exp(-Z) \sin Z \, dZ$$

Using a standard integral, this may be written

$$M = \frac{1}{2} \left(\frac{D}{\pi} \right) \rho_0 u_g$$
Since ρ_0 and u_g are assumed to be constant, we have

\[M = \rho_0 u_g \int_0^D \exp(-\pi z/D) \sin(\pi z/D) \, dz \]

Defining a new vertical variable $Z = \pi z/D$, this is

\[M = \rho_0 u_g \left(\frac{D}{\pi} \right) \int_0^\pi \exp(-Z) \sin Z \, dZ \]

Using a standard integral, this may be written

\[M = \frac{1}{2} \left(\frac{D}{\pi} \right) \rho_0 u_g \]

Here we have used the fact that

\[e^{-\pi} \approx 0.0432 \ll 1 \]
Exercise: Show that

\[
\int_0^\pi \exp(-Z) \sin Z \, dz = \frac{1}{2}(1 + e^{-\pi}) \approx \frac{1}{2}
\]
Exercise: Show that
\[
\int_0^\pi \exp(-Z) \sin Z \, dz = \frac{1}{2}(1 + e^{-\pi}) \approx \frac{1}{2}
\]

Solution:

- Evaluate the integral analytically
- Consult a Table of Integrals (e.g., GR2.663)
- Evaluate by numerical integration (MATLAB)
- Use MAPLE to evaluate it.
Exercise: Show that
\[\int_0^\pi \exp(-Z) \sin Z \, dz = \frac{1}{2}(1 + e^{-\pi}) \approx \frac{1}{2} \]

Solution:

- Evaluate the integral analytically
- Consult a Table of Integrals (e.g., GR2.663)
- Evaluate by numerical integration (MATLAB)
- Use MAPLE to evaluate it.

Note that the analytical evaluation of the integral is straightforward.
Exercise: Show that
\[\int_0^\pi \exp(-Z) \sin Z \, dz = \frac{1}{2}(1 + e^{-\pi}) \approx \frac{1}{2} \]

Solution:

- Evaluate the integral analytically
- Consult a Table of Integrals (e.g., GR2.663)
- Evaluate by numerical integration (**MATLAB**)
- Use **Maple** to evaluate it.

Note that the analytical evaluation of the integral is straightforward.

For example, it can be done by means of integration by parts (twice), or by expressing the \(\sin \)-function in terms of complex exponentials.
Next, integrate the continuity equation through the PBL:

\[\int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \, dz = \int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \, dz + [w(D) - w(0)] = 0 \]
Next, integrate the continuity equation through the PBL:

\[
\int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \, dz = \int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \, dz + [w(D) - w(0)] = 0
\]

We assume the surface is flat, so that \(w(0) = 0 \). Then

\[
w(D) = - \int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \, dz
\]
Next, integrate the continuity equation through the PBL:

\[\int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) dz = \int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dz + [w(D) - w(0)] = 0 \]

We assume the surface is flat, so that \(w(0) = 0 \). Then

\[w(D) = -\int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dz \]

Now recall the Ekman solution

\[u = u_g [1 - e^{-\pi z/D} \cos(\pi z/D)] , \quad v = u_g e^{-\pi z/D} \sin(\pi z/D) \]
Next, integrate the continuity equation through the PBL:

\[\int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \, dz = \int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \, dz + [w(D) - w(0)] = 0 \]

We assume the surface is flat, so that \(w(0) = 0 \). Then

\[w(D) = - \int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \, dz \]

Now recall the Ekman solution

\[u = u_g [1 - e^{-\pi z/D} \cos(\pi z/D)] , \quad v = u_g e^{-\pi z/D} \sin(\pi z/D) \]

Since the flow is purely zonal, \(u_g \) is independent of \(x \) so the (horizontal) divergence reduces to

\[\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \frac{\partial v}{\partial y} = \left(\frac{\partial u_g}{\partial y} \right) e^{-\pi z/D} \sin(\pi z/D) \]
Next, integrate the continuity equation through the PBL:

$$\int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \, dz = \int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \, dz + [w(D) - w(0)] = 0$$

We assume the surface is flat, so that $w(0) = 0$. Then

$$w(D) = -\int_0^D \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \, dz$$

Now recall the Ekman solution

$$u = u_g [1 - e^{-\pi z/D} \cos(\pi z/D)] \quad \text{and} \quad v = u_g e^{-\pi z/D} \sin(\pi z/D)$$

Since the flow is purely zonal, u_g is independent of x so the (horizontal) divergence reduces to

$$\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \frac{\partial v}{\partial y} = \left(\frac{\partial u_g}{\partial y} \right) e^{-\pi z/D} \sin(\pi z/D)$$

Substituting this into the equation for $w(D)$ gives

$$w(D) = -\frac{\partial u_g}{\partial y} \int_0^D e^{-\pi z/D} \sin(\pi z/D) \, dz = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y}$$
Again,

\[w(D) = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y} \]
Again,

\[w(D) = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y} \]

But recall the expression for mass transport

\[M = \frac{1}{2} \left(\frac{D}{\pi} \right) \rho_0 u_g \]
Again,

\[w(D) = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y} \]

But recall the expression for mass transport

\[M = \frac{1}{2} \left(\frac{D}{\pi} \right) \rho_0 u_g \]

Combining these, we have

\[\rho_0 w(D) = -\frac{\partial M}{\partial y} \]
Again,

\[w(D) = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y} \]

But recall the expression for mass transport

\[M = \frac{1}{2} \left(\frac{D}{\pi} \right) \rho_0 u_g \]

Combining these, we have

\[\rho_0 w(D) = -\frac{\partial M}{\partial y} \]

This says that the mass flux out of the boundary layer is equal to the cross-isobar mass transport in the layer.
Again,

\[w(D) = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y} \]

But recall the expression for mass transport

\[M = \frac{1}{2} \left(\frac{D}{\pi} \right) \rho_0 u_g \]

Combining these, we have

\[\rho_0 w(D) = -\frac{\partial M}{\partial y} \]

This says that the mass flux out of the boundary layer is equal to the cross-isobar mass transport in the layer.

We now note that the **geostrophic vorticity** is given by

\[\zeta_g = \left(\frac{\partial v_g}{\partial x} - \frac{\partial u_g}{\partial y} \right) = -\frac{\partial u_g}{\partial y} \]
Again,

\[w(D) = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y} \]

But recall the expression for mass transport

\[M = \frac{1}{2} \left(\frac{D}{\pi} \right) \rho_0 u_g \]

Combining these, we have

\[\rho_0 w(D) = -\frac{\partial M}{\partial y} \]

This says that the mass flux out of the boundary layer is equal to the cross-isobar mass transport in the layer.

We now note that the geostrophic vorticity is given by

\[\zeta_g = \left(\frac{\partial v_g}{\partial x} - \frac{\partial u_g}{\partial y} \right) = -\frac{\partial u_g}{\partial y} \]

Thus,

\[w(D) = -\frac{1}{2} \left(\frac{D}{\pi} \right) \frac{\partial u_g}{\partial y} = \left(\frac{D}{2\pi} \right) \zeta_g \]
This is the so-called **Ekman Pumping** formula:

\[
w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g
\]
This is the so-called **Ekman Pumping** formula:

\[w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g \]

It shows that the vertical velocity at the top of the Ekman Layer is proportional to the geostrophic vorticity.
This is the so-called **Ekman Pumping** formula:

\[w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g \]

It shows that the vertical velocity at the top of the Ekman Layer is proportional to the geostrophic vorticity.

In the vicinity of **Low Pressure** we have

\[
\begin{bmatrix}
\text{Cyclonic Flow} \\
\text{Positive Vorticity} \\
\text{Upward Velocity}
\end{bmatrix} \iff
\begin{bmatrix}
\text{Cyclonic Flow} \\
\text{Positive Vorticity} \\
\text{Upward Velocity}
\end{bmatrix}
\]
This is the so-called **Ekman Pumping** formula:

\[w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g \]

It shows that the vertical velocity at the top of the Ekman Layer is proportional to the geostrophic vorticity.

In the vicinity of **Low Pressure** we have

\[
\begin{bmatrix}
\text{Cyclonic Flow} \\
\text{Vorticity} \\
\text{Velocity}
\end{bmatrix} \iff
\begin{bmatrix}
\text{Positive Vorticity} \\
\text{Upward Velocity}
\end{bmatrix}
\]

In the vicinity of **High Pressure** we have

\[
\begin{bmatrix}
\text{Anticyclonic Flow} \\
\text{Vorticity} \\
\text{Velocity}
\end{bmatrix} \iff
\begin{bmatrix}
\text{Negative Vorticity} \\
\text{Downward Velocity}
\end{bmatrix}
\]
This is the so-called **Ekman Pumping** formula:

\[w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g \]

It shows that the vertical velocity at the top of the Ekman Layer is proportional to the geostrophic vorticity.

In the vicinity of **Low Pressure** we have

\[
\begin{bmatrix}
\text{Cyclonic Flow} \\
\text{Positive Vorticity} \\
\text{Upward Velocity}
\end{bmatrix} \iff \\
\begin{bmatrix}
\text{Anticyclonic Flow} \\
\text{Negative Vorticity} \\
\text{Downward Velocity}
\end{bmatrix}
\]

Note on **Dines Mechanism** to be added later.
Magnitude of Ekman Pumping
Magnitude of Ekman Pumping

The vertical velocity is

\[w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g \]
The vertical velocity is

\[w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g \]

Suppose \(D = 1 \text{ km} \) and \(\zeta = 5 \times 10^{-5} \text{ s}^{-1} \). Then

\[w(D) = \left(\frac{1}{2\pi} \right) \times 10^3 \times (5 \times 10^{-5}) = \frac{5 \times 10^{-2}}{2\pi} \approx 8 \text{ mm s}^{-1} \sim 1 \text{ cm s}^{-1} \]
Magnitude of Ekman Pumping

The vertical velocity is

\[w(D) = \left(\frac{1}{2\pi} \right) D \zeta_g \]

Suppose \(D = 1 \text{ km} \) and \(\zeta = 5 \times 10^{-5} \text{ s}^{-1} \). Then

\[w(D) = \left(\frac{1}{2\pi} \right) \times 10^3 \times (5 \times 10^{-5}) = \frac{5 \times 10^{-2}}{2\pi} \approx 8 \text{ mm s}^{-1} \sim 1 \text{ cm s}^{-1} \]

This is a relatively small value for vertical velocity, but it is important as it may extend over a large area and persist for a long time.
Magnitude of Ekman Pumping

The vertical velocity is

\[w(D) = \left(\frac{1}{2\pi} \right) D\zeta_g \]

Suppose \(D = 1 \text{ km} \) and \(\zeta = 5 \times 10^{-5} \text{ s}^{-1} \). Then

\[w(D) = \left(\frac{1}{2\pi} \right) \times 10^3 \times (5 \times 10^{-5}) = \frac{5 \times 10^{-2}}{2\pi} \approx 8 \text{ mm s}^{-1} \sim 1 \text{ cm s}^{-1} \]

This is a relatively small value for vertical velocity, but it is important as it may extend over a large area and persist for a long time.

If it is sufficient to lift air to its LCL, then latent heat release allows stronger updrafts within the convective clouds.
Storms in Teacups

Standing waves in a tea cup, induced by the propeller rotation of an airoplane.
Cyclostrophic Balanced Rotation
We consider now another flow configuration. We ignore the rotation of the earth.
We consider now another flow configuration. We ignore the rotation of the earth.

We use cylindrical polar coordinates \((r, \theta, z)\) and corresponding velocity components \((U, V, W)\).
We consider now another flow configuration. We ignore the rotation of the earth.

We use cylindrical polar coordinates \((r, \theta, z)\) and corresponding velocity components \((U, V, W)\).

We consider a cyclostrophically balanced vortex spinning in solid rotation.
We consider now another flow configuration. We ignore the rotation of the earth.

We use cylindrical polar coordinates \((r, \theta, z)\) and corresponding velocity components \((U, V, W)\).

We consider a cyclostrophically balanced vortex spinning in solid rotation.

That is, the azimuthal velocity depends linearly on the radial distance:

\[
U_g = 0, \quad V_g = \omega r
\]

where \(\omega = \dot{\theta}\) is the constant angular velocity.
We consider now another flow configuration. We ignore the rotation of the earth.

We use cylindrical polar coordinates \((r, \theta, z)\) and corresponding velocity components \((U, V, W)\).

We consider a cyclostrophically balanced vortex spinning in solid rotation.

That is, the azimuthal velocity depends linearly on the radial distance:

\[
U_g = 0, \quad V_g = \omega r
\]

where \(\omega = \dot{\theta}\) is the constant angular velocity.

The centrifugal force is given, as usual, by

\[
\frac{V^2}{r} = \omega^2 r
\]
For steady flow, the centrifugal force is balanced by the pressure gradient force:

\[
\frac{1}{\rho_0} \frac{\partial p}{\partial r} = \omega^2 r
\]
For steady flow, the centrifugal force is balanced by the pressure gradient force:

$$\frac{1}{\rho_0} \frac{\partial p}{\partial r} = \omega^2 r$$

This can be integrated immediately to give

$$p = p_0 + \frac{1}{2}\rho_0 \omega^2 r^2$$

so the surface has the form of a parabola (or more correctly a paraboloid of revolution).
For steady flow, the centrifugal force is balanced by the pressure gradient force:

\[
\frac{1}{\rho_0} \frac{\partial p}{\partial r} = \omega^2 r
\]

This can be integrated immediately to give

\[
p = p_0 + \frac{1}{2} \rho_0 \omega^2 r^2
\]

so the surface has the form of a parabola (or more correctly a paraboloid of revolution).

Near the bottom boundary, the flow is slowed by the effect of viscosity. Then, the centrifugal force is insufficient to balance the pressure gradient force.
For steady flow, the centrifugal force is balanced by the pressure gradient force:

\[
\frac{1}{\rho_0} \frac{\partial p}{\partial r} = \omega^2 r
\]

This can be integrated immediately to give

\[
p = p_0 + \frac{1}{2}\rho_0 \omega^2 r^2
\]

so the surface has the form of a parabola (or more correctly a paraboloid of revolution).

Near the bottom boundary, the flow is slowed by the effect of viscosity. Then, the centrifugal force is insufficient to balance the pressure gradient force.

As a result, there is radial inflow near the bottom. By continuity of mass, this must result in upward motion near the centre.
For steady flow, the centrifugal force is balanced by the pressure gradient force:

\[\frac{1}{\rho_0} \frac{\partial p}{\partial r} = \omega^2 r \]

This can be integrated immediately to give

\[p = p_0 + \frac{1}{2} \rho_0 \omega^2 r^2 \]

so the surface has the form of a parabola (or more correctly a paraboloid of revolution).

Near the bottom boundary, the flow is slowed by the effect of viscosity. Then, the centrifugal force is insufficient to balance the pressure gradient force.

As a result, there is radial inflow near the bottom. By continuity of mass, this must result in upward motion near the centre.

Furthermore, outflow must occur in the fluid above the boundary layer.
This secondary circulation is completed by downward flow near the edges of the container.
This **secondary circulation** is completed by downward flow near the edges of the container.

At the bottom surface, the flow must vanish completely.
This secondary circulation is completed by downward flow near the edges of the container.

At the bottom surface, the flow must vanish completely.

An analysis similar to the case of zonal flow again gives a solution in the form of an **Ekman spiral**. But now the quantity corresponding to the Coriolis parameter is 2ω, so we have $\gamma = \sqrt{\omega/K}$.
This secondary circulation is completed by downward flow near the edges of the container.

At the bottom surface, the flow must vanish completely.

An analysis similar to the case of zonal flow again gives a solution in the form of an Ekman spiral. But now the quantity corresponding to the Coriolis parameter is 2ω, so we have $\gamma = \sqrt{\omega/K}$.

The boundary layer depth is again $D = \pi/\gamma$.
This **secondary circulation** is completed by downward flow near the edges of the container.

At the bottom surface, the flow must vanish completely.

An analysis similar to the case of zonal flow again gives a solution in the form of an **Ekman spiral**. But now the quantity corresponding to the Coriolis parameter is 2ω, so we have $\gamma = \sqrt{\omega/K}$.

The boundary layer depth is again $D = \pi/\gamma$.

The vertical velocity at the top of the boundary layer is

$$w(D) = \left(\frac{1}{2\pi}\right) D \zeta g$$
This **secondary circulation** is completed by downward flow near the edges of the container.

At the bottom surface, the flow must vanish completely.

An analysis similar to the case of zonal flow again gives a solution in the form of an **Ekman spiral**. But now the quantity corresponding to the Coriolis parameter is 2ω, so we have $\gamma = \sqrt{\omega/K}$.

The boundary layer depth is again $D = \pi/\gamma$.

The vertical velocity at the top of the boundary layer is

$$w(D) = \left(\frac{1}{2\pi}\right) D \zeta_g$$

The geostrophic vorticity is given, in cylindrical coordinates, by

$$\zeta_g = \mathbf{K} \cdot \nabla \times \mathbf{V}_g = \frac{1}{r} \left[\frac{\partial(rV_g)}{\partial r} - \frac{\partial U_g}{\partial \theta} \right] = \frac{1}{r} \frac{\partial (\omega r^2)}{\partial r} = 2\omega$$
Thus, the Ekman pumping is

\[w(D) = \frac{\omega D}{\pi} \]
Thus, the Ekman pumping is

\[w(D) = \frac{\omega D}{\pi} \]

Let us suppose \(D = 1 \text{ cm} \) and \(\omega = 1 \text{ c.p.s.} \). Then

\[w(D) = \frac{2\pi \text{ s}^{-1} \times 1 \text{ cm}}{\pi} = 2 \text{ cm s}^{-1} \]
Thus, the Ekman pumping is

\[w(D) = \frac{\omega D}{\pi} \]

Let us suppose \(D = 1 \text{ cm} \) and \(\omega = 1 \text{ c.p.s.} \). Then

\[w(D) = \frac{2\pi \text{s}^{-1} \times 1 \text{ cm}}{\pi} = 2 \text{ cm s}^{-1} \]

We may compare this to the azimuthal velocity. At \(r = 5 \text{ cm} \) we have

\[V_g = \omega r = 2\pi \text{s}^{-1} \times 5 \text{ cm} \approx 30 \text{ cm s}^{-1} \]

Thus, the secondary circulation is relatively weak compared to the primary (solid rotation) circulation. But it is dynamically important.
Thus, the Ekman pumping is

\[w(D) = \frac{\omega D}{\pi} \]

Let us suppose \(D = 1 \text{ cm} \) and \(\omega = 1 \text{ c.p.s.} \). Then

\[w(D) = \frac{2\pi \text{s}^{-1} \times 1 \text{ cm}}{\pi} = 2 \text{ cm s}^{-1} \]

We may compare this to the azimuthal velocity. At \(r = 5 \text{ cm} \) we have

\[V_g = \omega r = 2\pi \text{s}^{-1} \times 5 \text{ cm} \approx 30 \text{ cm s}^{-1} \]

Thus, the secondary circulation is relatively weak compared to the primary (solid rotation) circulation. But it is dynamically important.

Exercise: Create a storm in a teacup:
Stir your tea (no milk) and observe the leaves.
Exercise:

- Calculate the mass influx through the sides of a cyclone.
- Equate this to the upward flux through the top of the boundary layer.
- Deduce an expression for the vertical velocity.
Exercise:

• Calculate the mass influx through the sides of a cyclone.
• Equate this to the upward flux through the top of the boundary layer.
• Deduce an expression for the vertical velocity.
Sketch of Solution:

From the Ekman solution, the mean inward velocity is

\[
\bar{V}_{\text{inward}} = \frac{1}{2}ug \left(\frac{D}{\pi} \right)
\]
Sketch of Solution:

From the Ekman solution, the mean inward velocity is

$$\bar{V}_{\text{inward}} = \frac{1}{2} u g \left(\frac{D}{\pi} \right)$$

The horizontal inward mass transport is

$$M_H = \rho_0 \bar{V}_{\text{inward}} = \frac{1}{2} \rho_0 u g \left(\frac{D}{\pi} \right) \times 2\pi R = \rho_0 u g D R$$
Sketch of Solution:

From the Ekman solution, the mean inward velocity is

\[\bar{V}_{\text{inward}} = \frac{1}{2} u_g \left(\frac{D}{\pi} \right) \]

The horizontal inward mass transport is

\[M_H = \rho_0 \bar{V}_{\text{inward}} = \frac{1}{2} \rho_0 u_g \left(\frac{D}{\pi} \right) \times 2\pi R = \rho_0 u_g D R \]

The vertical mass transport through the top is

\[\rho_0 w(D) \times \pi R^2 \]
Sketch of Solution:

From the Ekman solution, the mean inward velocity is

\[\bar{V}_{\text{inward}} = \frac{1}{2} u_g \left(\frac{D}{\pi} \right) \]

The horizontal inward mass transport is

\[M_H = \rho_0 \bar{V}_{\text{inward}} = \frac{1}{2} \rho_0 u_g \left(\frac{D}{\pi} \right) \times 2\pi R = \rho_0 u_g DR \]

The vertical mass transport through the top is

\[\rho_0 w(D) \times \pi R^2 \]

These must be equal, so

\[w(D) = \frac{\rho_0 u_g DR}{\rho_0 \times \pi R^2} = \frac{D}{\pi R} u_g \]
Sketch of Solution:

From the Ekman solution, the mean inward velocity is

\[
\bar{V}_{\text{inward}} = \frac{1}{2} u_g \left(\frac{D}{\pi} \right)
\]

The horizontal inward mass transport is

\[
M_H = \rho_0 \bar{V}_{\text{inward}} = \frac{1}{2} \rho_0 u_g \left(\frac{D}{\pi} \right) \times 2\pi R = \rho_0 u_g D R
\]

The vertical mass transport through the top is

\[
\rho_0 w(D) \times \pi R^2
\]

These must be equal, so

\[
w(D) = \frac{\rho_0 u_g D R}{\rho_0 \times \pi R^2} = \frac{D}{\pi R} u_g
\]

For solid body rotation, \(u_g = \omega R \) and the geostrophic vorticity is \(\zeta_g = 2\omega \), so

\[
w(D) = \frac{D}{2\pi} \zeta_g
\]
We estimate the characteristic spin-down time of the secondary circulation for a barotropic atmosphere.
Spin-Down

We estimate the characteristic spin-down time of the secondary circulation for a barotropic atmosphere.

The barotropic vorticity equation is

\[
\frac{d\zeta_g}{dt} = -f \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = f \frac{\partial w}{\partial z}
\]
Spin-Down

We estimate the characteristic spin-down time of the secondary circulation for a barotropic atmosphere.

The barotropic vorticity equation is

\[
\frac{d\zeta_g}{dt} = -f \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = f \frac{\partial w}{\partial z}
\]

We integrate this through the free atmosphere, that is, from \(z = D \) to \(z = H \), where \(H \) is the height of the tropopause.
Spin-Down

We estimate the characteristic spin-down time of the secondary circulation for a barotropic atmosphere.

The barotropic vorticity equation is

$$\frac{d\zeta_g}{dt} = -f \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = f \frac{\partial w}{\partial z}$$

We integrate this through the free atmosphere, that is, from $z = D$ to $z = H$, where H is the height of the tropopause.

The result is

$$(H - D) \frac{d\zeta_g}{dt} = f[w(H) - W(D)]$$
Spin-Down

We estimate the characteristic spin-down time of the secondary circulation for a barotropic atmosphere.

The barotropic vorticity equation is

\[
\frac{d\zeta_g}{dt} = -f \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = f \frac{\partial w}{\partial z}
\]

We integrate this through the free atmosphere, that is, from \(z = D \) to \(z = H \), where \(H \) is the height of the tropopause.

The result is

\[
(H - D) \frac{d\zeta_g}{dt} = f[w(H) - W(D)]
\]

Assuming \(w(H) = 0 \) and substituting the Ekman pumping for \(W(D) \) we get

\[
\frac{d\zeta_g}{dt} = -\frac{f}{(H - D)} \left(\frac{1}{2\pi} \right) D\zeta_g
\]
Assuming $H \gg D$, this is

$$\frac{d\zeta_g}{dt} = -\frac{fD}{2\pi H} \zeta_g$$
Assuming $H \gg D$, this is

$$\frac{d\zeta_g}{dt} = -\frac{fD}{2\pi H} \zeta_g$$

If we define the time-scale

$$\tau_{Ekman} = \frac{2\pi H}{fD}$$

the equation for vorticity may be written

$$\frac{d\zeta_g}{dt} = -\frac{1}{\tau_{Ekman}} \zeta_g$$
Assuming $H \gg D$, this is

$$\frac{d\zeta_g}{dt} = -\frac{fD}{2\pi H} \zeta_g$$

If we define the time-scale

$$\tau_{\text{Ekman}} = \frac{2\pi H}{fD}$$

the equation for vorticity may be written

$$\frac{d\zeta_g}{dt} = -\frac{1}{\tau_{\text{Ekman}}} \zeta_g$$

The solution for the vorticity is

$$\zeta_g = \zeta_g(0) \exp(-t/\tau_{\text{Ekman}})$$
Assuming $H \gg D$, this is
\[
\frac{d\zeta_g}{dt} = -\frac{fD}{2\pi H} \zeta_g
\]

If we define the time-scale
\[
\tau_{\text{Ekman}} = \frac{2\pi H}{fD}
\]
the equation for vorticity may be written
\[
\frac{d\zeta_g}{dt} = -\frac{1}{\tau_{\text{Ekman}}} \zeta_g
\]

The solution for the vorticity is
\[
\zeta_g = \zeta_g(0) \exp(-t/\tau_{\text{Ekman}})
\]

The size of τ_{Ekman} may be estimated for typical values:
\[
\tau_{\text{Ekman}} = \frac{2\pi H}{fD} = \frac{2\pi \times 10^4}{10^{-4} \times 10^3} \approx 6 \times 10^5 \text{s}
\]
which is about seven days.
We may compare this to the time-scale for eddy diffusion. The diffusion equation is

\[\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial z^2} \]
We may compare this to the time-scale for eddy diffusion. The diffusion equation is

$$\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial z^2}$$

If τ_{Diff} is the diffusion time-scale and H the vertical scale for diffusion, we get

$$\frac{U}{\tau_{\text{Diff}}} = \frac{KU}{H^2}$$
We may compare this to the **time-scale for eddy diffusion**. The diffusion equation is

\[
\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial z^2}
\]

If \(\tau_{\text{Diff}} \) is the diffusion time-scale and \(H \) the vertical scale for diffusion, we get

\[
\frac{U}{\tau_{\text{Diff}}} = \frac{KU}{H^2}
\]

For the values already assumed (\(K = 5 \text{ m}^2 \text{ s}^{-1} \) and \(H = 10 \text{ km} \)) we get

\[
\tau_{\text{Diff}} = \frac{H^2}{K} \approx \frac{10^8}{5} = 2 \times 10^7 \text{ s}
\]

which is of the order of 225 days, about 30 times longer than \(\tau_{\text{Ekman}} \).
We may compare this to the time-scale for eddy diffusion. The diffusion equation is

$$\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial z^2}$$

If τ_{Diff} is the diffusion time-scale and H the vertical scale for diffusion, we get

$$\frac{U}{\tau_{\text{Diff}}} = \frac{KU}{H^2}$$

For the values already assumed ($K = 5 \text{ m}^2 \text{ s}^{-1}$ and $H = 10 \text{ km}$) we get

$$\tau_{\text{Diff}} = \frac{H^2}{K} \approx \frac{10^8}{5} = 2 \times 10^7 \text{ s}$$

which is of the order of 225 days, about 30 times longer than τ_{Ekman}.

Thus, in the absence of convective clouds, Ekman spin-down is much more effective than eddy diffusion.
We may compare this to the time-scale for eddy diffusion. The diffusion equation is
\[\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial z^2} \]

If \(\tau_{\text{Diff}} \) is the diffusion time-scale and \(H \) the vertical scale for diffusion, we get
\[\frac{U}{\tau_{\text{Diff}}} = \frac{KU}{H^2} \]

For the values already assumed \((K = 5 \text{ m}^2 \text{s}^{-1} \text{ and } H = 10 \text{ km})\) we get
\[\tau_{\text{Diff}} = \frac{H^2}{K} \approx \frac{10^8}{5} = 2 \times 10^7 \text{s} \]

which is of the order of 225 days, about 30 times longer than \(\tau_{\text{Ekman}} \).

Thus, in the absence of convective clouds, Ekman spin-down is much more effective than eddy diffusion.

However, cumulonimbus convection can produce rapid transport of heat and momentum through the entire troposphere.
Ekman spiral in the ocean.
Typical La Niña Pattern

Mean sea surface temperature, eastern Pacific Ocean
5 September to 5 October, 1998.
End of §5.5