M.Sc. in Meteorology

Physical Meteorology
Prof Peter Lynch

Mathematical Computation Laboratory
Dept. of Maths. Physics, UCD, Belfield.
Tourists run through a swarm of pink locusts near Corralejo, on the Canary Island of Fuerteventura, yesterday. Environmental experts estimate that some 100 million of the insects arrived in the Canaries from North Africa at the weekend.

(Irish Times, Tue Nov 30, 2004)
Part 5:

The Theory of the Atmospheric Boundary Layer
§5.1. Introduction to Turbulent Flow
The *planetary boundary layer* is the portion of the atmosphere in which the flow field is strongly influenced directly by interaction with the surface of the earth.
The *planetary boundary layer* is the portion of the atmosphere in which the flow field is strongly influenced directly by interaction with the surface of the earth.

Ultimately, this interaction depends on molecular processes.
The *planetary boundary layer* is the portion of the atmosphere in which the flow field is strongly influenced directly by interaction with the surface of the earth.

Ultimately, this interaction depends on molecular processes. Molecular diffusion is only important within the first few millimetres of the earth’s surface, where vertical wind shears are very intense.
The *planetary boundary layer* is the portion of the atmosphere in which the flow field is strongly influenced directly by interaction with the surface of the earth.

Ultimately, this interaction depends on molecular processes. Molecular diffusion is only important within the first few millimetres of the earth’s surface, where vertical wind shears are very intense.

However, this *viscous sub-layer* has profound consequences for atmospheric flow:
The *planetary boundary layer* is the portion of the atmosphere in which the flow field is strongly influenced directly by interaction with the surface of the earth.

Ultimately, this interaction depends on *molecular processes*. Molecular diffusion is only important within the first few millimetres of the earth’s surface, where vertical wind shears are very intense.

However, this *viscous sub-layer* has profound consequences for atmospheric flow:

It causes the velocity to vanish at the earth boundary. This *no-slip boundary condition* continually leads to the development of *turbulent eddies*.
The *planetary boundary layer* is the portion of the atmosphere in which the flow field is strongly influenced directly by interaction with the surface of the earth.

Ultimately, this interaction depends on *molecular processes*. Molecular diffusion is only important within the first few millimetres of the earth’s surface, where vertical wind shears are very intense.

However, this *viscous sub-layer* has profound consequences for atmospheric flow:

It causes the velocity to vanish at the earth boundary. This *no-slip boundary condition* continually leads to the development of *turbulent eddies*.

The eddies have temporal and spatial scales much smaller than can be resolved by observing network or by atmospheric computer models.
The spatial scales of the turbulent eddies range from about 10^{-3}m to 10^{3}m, i.e., from a millimetre to a kilometre.
The spatial scales of the turbulent eddies range from about 10^{-3}m to 10^3m, i.e., from a millimetre to a kilometre.

These shear-induced eddies are very effective in transferring heat and moisture away from the surface, and momentum to the surface.
The spatial scales of the turbulent eddies range from about 10^{-3}m to 10^3m, i.e., from a millimetre to a kilometre.

These shear-induced eddies are very effective in transferring heat and moisture away from the surface, and momentum to the surface.

The eddy transfer rates are many orders of magnitude greater than those of molecular processes.
The spatial scales of the turbulent eddies range from about 10^{-3}m to 10^3m, i.e., from a millimetre to a kilometre.

These shear-induced eddies are very effective in transferring heat and moisture away from the surface, and momentum to the surface.

The eddy transfer rates are many orders of magnitude greater than those of molecular processes.

The depth of the boundary layer produced by this turbulent transfer can vary from a few tens of metres in very stable conditions to several kilometres.
The spatial scales of the turbulent eddies range from about 10^{-3} m to 10^3 m, i.e., from a millimetre to a kilometre.

These shear-induced eddies are very effective in transferring heat and moisture away from the surface, and momentum to the surface.

The eddy transfer rates are many orders of magnitude greater than those of molecular processes.

The **depth of the boundary layer** produced by this turbulent transfer can vary from a few tens of metres in very stable conditions to several kilometres.

Typically it is about **1 km in depth** and comprises about 10% of the mass of the atmosphere.
The spatial scales of the turbulent eddies range from about 10^{-3} m to 10^{3} m, i.e., from a millimetre to a kilometre.

These shear-induced eddies are very effective in transferring heat and moisture away from the surface, and momentum to the surface.

The eddy transfer rates are many orders of magnitude greater than those of molecular processes.

The depth of the boundary layer produced by this turbulent transfer can vary from a few tens of metres in very stable conditions to several kilometres.

Typically it is about 1 km in depth and comprises about 10% of the mass of the atmosphere.

In the free atmosphere this turbulence can be ignored except in special circumstances (e.g., near jet streams, fronts and convective cells).
The spatial scales of the turbulent eddies range from about 10^{-3} m to 10^3 m, i.e., from a millimetre to a kilometre.

These shear-induced eddies are very effective in transferring heat and moisture away from the surface, and momentum to the surface.

The eddy transfer rates are many orders of magnitude greater than those of molecular processes.

The depth of the boundary layer produced by this turbulent transfer can vary from a few tens of metres in very stable conditions to several kilometres.

Typically it is about 1 km in depth and comprises about 10% of the mass of the atmosphere.

In the free atmosphere this turbulence can be ignored except in special circumstances (e.g., near jet streams, fronts and convective cells).

However, in the boundary layer, it is a dominant process and must be included in the model equations.
A body moving at constant speed through a gas or a fluid does not experience any resistance (D’Alembert 1752).
Hypothetical Fluid Flow

Actual Fluid Flow

Viscous Flow. Strong upstream-downstream asymmetry.
The minutest amount of viscosity has a profound qualitative impact on the character of the solution. The Navier-Stokes equations incorporate the effect of viscosity.
Flow around/over a Hill

Turbulence caused by flow around or over a hill ...
Flow around/over a Hill

...can be fatal for light aircraft.
Wake Turbulence
Wake Turbulence
The smoke rising from a cigarette flows upwards first in laminar motion. But, as its speed grows, this motion becomes unstable and breaks down into turbulent flow.
Although they seem to hang motionless in the sky, clouds are in perpetual turbulent motion. Constantly dissolving and reforming, clouds take their shape from the ever-changing conditions that form them.
Colour-enhanced image from the Eumetsat MSG-1 satellite (18 February, 2003).
Von Karman Vortex Street
Von Karman Vortex Street
Kelvin-Helmholtz Instability
Onset of Turbulent Flow
We consider now the various parameterization schemes used in the ECMWF Weather Forecast Model.

This model is known as the IFS, for Integrated Forecast System.
Physical processes represented in the IFS model.
The physical processes associated with
- radiative transfer,
- turbulent mixing,
- subgrid-scale orographic drag,
- moist convection,
- clouds, and
- surface/soil processes
have a strong impact on the large scale flow of the atmosphere.
The physical processes associated with

- radiative transfer,
- turbulent mixing,
- subgrid-scale orographic drag,
- moist convection,
- clouds, and
- surface/soil processes

have a strong impact on the large scale flow of the atmosphere.

However, these mechanisms are often active at scales smaller than the horizontal grid size.
Parametrization schemes are then necessary in order to properly describe the impact of these subgrid-scale mechanisms on the large scale flow of the atmosphere.
Parametrization schemes are then necessary in order to properly describe the impact of these subgrid-scale mechanisms on the large scale flow of the atmosphere.

In other words the ensemble effect of the subgrid-scale processes has to be formulated *in terms of the resolved grid-scale variables*.
Parametrization schemes are then necessary in order to properly describe the impact of these subgrid-scale mechanisms on the large scale flow of the atmosphere.

In other words the ensemble effect of the subgrid-scale processes has to be formulated *in terms of the resolved grid-scale variables*.

Furthermore, forecast weather parameters, such as two-metre temperature, precipitation and cloud cover, are computed by the physical parametrization part of the model.
After all the explicit dynamical computations per time-step are performed, the physics parametrization package is called by the model.
After all the explicit dynamical computations per time-step are performed, the physics parametrization package is called by the model.

The physics computations are performed only in the vertical direction. That is, each column is considered independently.
After all the explicit dynamical computations per time-step are performed, the physics parametrization package is called by the model.

The physics computations are performed only in the vertical direction. That is, each column is considered independently.

The input information for the physics consists of the values of the mean prognostic variables (wind components, temperature, specific humidity, liquid/ice water content and cloud fraction), the provisional dynamical tendencies for the same variables and various surface fields, both fixed and variable.
The Planetary Boundary Layer (PBL) plays a fundamental role in the whole atmosphere-earth system.
The Planetary Boundary Layer (PBL) plays a fundamental role in the whole atmosphere-earth system. It is through the *surface exchanges of momentum, heat and moisture* that the atmosphere *feels* that it moves over a rough land surface or a wet smooth sea.
The Planetary Boundary Layer (PBL) plays a fundamental role in the whole atmosphere-earth system.

It is through the \textit{surface exchanges of momentum, heat and moisture} that the atmosphere \textit{feels} that it moves over a rough land surface or a wet smooth sea.

The lowest 13 levels of the ECMWF model are at around 10, 30, 60, 100, 160, 240, 340, 460, 600, 760, 950, 1170 and 1400 m above the model surface.
The Planetary Boundary Layer (PBL) plays a fundamental role in the whole atmosphere-earth system.

It is through the *surface exchanges of momentum, heat and moisture* that the atmosphere *feels* that it moves over a rough land surface or a wet smooth sea.

The lowest 13 levels of the ECMWF model are at around 10, 30, 60, 100, 160, 240, 340, 460, 600, 760, 950, 1170 and 1400 m above the model surface.

Even with this fairly high resolution the vertical gradients of temperature, wind, moisture etc. in the PBL cannot be described very accurately, let alone the turbulent transports of momentum, heat and moisture.
The Planetary Boundary Layer (PBL) plays a fundamental role in the whole atmosphere-earth system.

It is through the *surface exchanges of momentum, heat and moisture* that the atmosphere *feels* that it moves over a rough land surface or a wet smooth sea.

The lowest 13 levels of the ECMWF model are at around 10, 30, 60, 100, 160, 240, 340, 460, 600, 760, 950, 1170 and 1400 m above the model surface.

Even with this fairly high resolution the vertical gradients of temperature, wind, moisture etc. in the PBL cannot be described very accurately, let alone the turbulent transports of momentum, heat and moisture.

For the estimation of these parameters the model uses the larger scale variables such as wind, temperature and specific humidity.
The *assumption* is that the transports are proportional to the vertical gradients of the large-scale variables.
The *assumption* is that the transports are proportional to the vertical gradients of the large-scale variables.

At the earth’s surface, the turbulent transports of momentum, heat and moisture are computed as a function of air-surface differences and surface characteristics.
The *assumption* is that the transports are proportional to the vertical gradients of the large-scale variables.

At the earth’s surface, the turbulent transports of momentum, heat and moisture are computed as a function of air-surface differences and surface characteristics.

Over land areas, snow depth, soil temperature and wetness are forecast variables, calculated by a model of the soil with four layers with respective depths of 7, 21, 72 and 189 cm.
The assumption is that the transports are proportional to the vertical gradients of the large-scale variables.

At the earth’s surface, the turbulent transports of momentum, heat and moisture are computed as a function of air-surface differences and surface characteristics.

Over land areas, snow depth, soil temperature and wetness are forecast variables, calculated by a model of the soil with four layers with respective depths of 7, 21, 72 and 189 cm.

The sea surface temperature (SST) is based on analyses received daily from NCEP, Washington. It is based on ship, buoy and satellite observations.
The *assumption* is that the transports are proportional to the vertical gradients of the large-scale variables.

At the earth’s surface, the turbulent transports of momentum, heat and moisture are computed as a function of air-surface differences and surface characteristics.

Over land areas, snow depth, soil temperature and wetness are forecast variables, calculated by a model of the soil with four layers with respective depths of 7, 21, 72 and 189 cm.

The *sea surface temperature* (SST) is based on analyses received daily from NCEP, Washington. It is based on ship, buoy and satellite observations.

In small waters like the Baltic Sea where rapid changes in SST can take place during the cold season, the real SST can sometimes differ by as much as 5° from the analysis.
The assumption is that the transports are proportional to the vertical gradients of the large-scale variables.

At the earth’s surface, the turbulent transports of momentum, heat and moisture are computed as a function of air-surface differences and surface characteristics.

Over land areas, snow depth, soil temperature and wetness are forecast variables, calculated by a model of the soil with four layers with respective depths of 7, 21, 72 and 189 cm.

The sea surface temperature (SST) is based on analyses received daily from NCEP, Washington. It is based on ship, buoy and satellite observations.

In small waters like the Baltic Sea where rapid changes in SST can take place during the cold season, the real SST can sometimes differ by as much as 5° from the analysis.

The sea-ice fraction is based on satellite observations. The temperature at the surface of the ice is variable, according to a simple energy balance/heat budget scheme.
The SST over ice-free water and the distribution of sea and sea-ice points is kept constant during the forecast; no freezing of the water or melting of the ice is allowed.
The SST over ice-free water and the distribution of sea and sea-ice points is kept constant during the forecast; no freezing of the water or melting of the ice is allowed.

For the *albedo* a background monthly climate field is used over land. Over sea-ice the albedo is set to 0.7 and 0.5 for the two spectral bands. Open water has an albedo of 0.06 for diffuse radiation and a functional dependence of solar radiation for direct radiation.
The SST over ice-free water and the distribution of sea and sea-ice points is kept constant during the forecast; no freezing of the water or melting of the ice is allowed.

For the **albedo** a background monthly climate field is used over land. Over sea-ice the albedo is set to 0.7 and 0.5 for the two spectral bands. Open water has an albedo of 0.06 for diffuse radiation and a functional dependence of solar radiation for direct radiation.

Over land the forecast albedo depends on the background albedo and the snow depth. It has a minimum of 0.07 and can go up to 0.80 for exposed snow and 0.20 for snow in forest.
The SST over ice-free water and the distribution of sea and sea-ice points is kept constant during the forecast; no freezing of the water or melting of the ice is allowed.

For the *albedo* a background monthly climate field is used over land. Over sea-ice the albedo is set to 0.7 and 0.5 for the two spectral bands. Open water has an albedo of 0.06 for diffuse radiation and a functional dependence of solar radiation for direct radiation.

Over land the forecast albedo depends on the background albedo and the snow depth. It has a minimum of 0.07 and can go up to 0.80 for exposed snow and 0.20 for snow in forest.

The *thermal properties of snow covered ground* depend only on the snow mass per unit area. The snow depth evolves through the combined effect of snowfall, evaporation and melting. As the snow ages, the albedo decreases and the density increases.
The soil moisture is divided into skin and soil reservoirs.
The *soil moisture* is divided into skin and soil reservoirs. The skin reservoir (which mainly is moisture on vegetation) evolves under the action of its own evaporation and its ability to collect dew and intercept precipitation.
The *soil moisture* is divided into skin and soil reservoirs. The skin reservoir (which mainly is moisture on vegetation) evolves under the action of its own evaporation and its ability to collect dew and intercept precipitation.

The soil reservoir takes into account precipitation and snow melt, as well as vertical transfer of water due to drainage and capillarity, evaporation over bare ground and root uptake by vegetation.
The soil moisture is divided into skin and soil reservoirs. The skin reservoir (which mainly is moisture on vegetation) evolves under the action of its own evaporation and its ability to collect dew and intercept precipitation.

The soil reservoir takes into account precipitation and snow melt, as well as vertical transfer of water due to drainage and capillarity, evaporation over bare ground and root uptake by vegetation.

The vegetation ratio is separated into low and high vegetation fractions and the corresponding dominant types of vegetation are specified in each grid point and used by the model to estimate the evaporation.
The **orographic drag scheme** represents the momentum transport due to sub-grid gravity waves and the blocking effect of orography in relatively stable conditions.
The *orographic drag scheme* represents the momentum transport due to sub-grid gravity waves and the blocking effect of orography in relatively stable conditions.

When stably stratified air flow crosses a mountain ridge, gravity waves are excited into the flow. Depending on the static stability and vertical wind shear, these gravity waves can propagate vertically until they have sufficiently large amplitude to break.
The *orographic drag scheme* represents the momentum transport due to sub-grid gravity waves and the blocking effect of orography in relatively stable conditions.

When stably stratified air flow crosses a mountain ridge, gravity waves are excited into the flow. Depending on the static stability and vertical wind shear, these gravity waves can propagate vertically until they have sufficiently large amplitude to break.

The scheme has a certain impact on the large scale flow; it makes it slightly less zonal and contributes to the formation of *blocking highs* and *cut-off lows*.

* * * *
The *orographic drag scheme* represents the momentum transport due to sub-grid gravity waves and the blocking effect of orography in relatively stable conditions.

When stably stratified air flow crosses a mountain ridge, gravity waves are excited into the flow. Depending on the static stability and vertical wind shear, these gravity waves can propagate vertically until they have sufficiently large amplitude to break.

The scheme has a certain impact on the large scale flow; it makes it slightly less zonal and contributes to the formation of *blocking highs* and *cut-off lows*.

* * *

Comprehensive information on the IFS code is available at www.ecmwf.int
End of §5.1