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If a material undergoes a change in its physical state (e.g.,
its pressure, volume, or temperature) without any heat be-
ing added to it or withdrawn from it, the change is said to
be adiabatic.

Suppose that the initial state of a material is represented by
the point A on the thermodynamic diagram below, and that
when the material undergoes an isothermal transformation
it moves along the line AB.

If the same material undergoes a similar change in volume
but under adiabatic conditions, the transformation would
be represented by a curve such as AC, which is called an
adiabat.



An isotherm and an adiabat on a p–V -diagram.
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ergy increases:

dq = du + p dα and dq = 0 =⇒ du = −p dα > 0

and therefore the temperature of the system rises:

du = cv dT > 0 =⇒ TC > TA

However, for the isothermal compression from A to B, the
temperature remains constant: TB = TA. Hence, TB < TC.
But αB = αC (the final volumes are equal); so

pB =
RTB

αB
<

RTC

αC
= pC

that is, pB < pC.

Thus, the adiabat is steeper than the isotherm.
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The Idea of an Air Parcel
In the atmosphere, molecular mixing is important only within
a centimeter of the Earth’s surface and at levels above the
turbopause (∼105 km).

At intermediate levels, virtually all mixing in the vertical
is accomplished by the exchange of macroscale air parcels
with horizontal dimensions ranging from a few centimeters
to the scale of the Earth itself.

That is, mixing is due not to molecular motions, but to
eddies of various sizes.

Recall Richardson’s rhyme:

Big whirls have little whirls that feed on their velocity,

And little whirls have lesser whirls and so on to viscosity.

--- in the molecular sense.
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To gain some insights into the nature of vertical mixing in
the atmosphere it is useful to consider the behavior of an
air parcel of infinitesimal dimensions that is assumed to be:

• thermally insulated from its environment, so that its tem-
perature changes adiabatically as it rises or sinks

• always at exactly the same pressure as the environmental
air at the same level, which is assumed to be in hydro-
static equilibrium

• moving slowly enough that the macroscopic kinetic en-
ergy of the air parcel is a negligible fraction of its total
energy.

This simple, idealized model is helpful in understanding
some of the physical processes that influence the distribu-
tion of vertical motions and vertical mixing in the atmo-
sphere.
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The Dry Adiabatic Lapse Rate
We will now derive an expression for the rate of change of
temperature with height of a parcel of dry air as it moves
about in the Earth’s atmosphere.

Since the air parcel undergoes only adiabatic transforma-
tions (dq = 0), and the atmosphere is in hydrostatic equilib-
rium, for a unit mass of air in the parcel we have:

cv dT + p dα = 0

cv dT + d(p α)− α dp = 0

cv dT + d(R T )− α dp = 0

(cv + R)dT + g dz = 0

cp dT + g dz = 0

Dividing through by dz, we obtain

−
(

dT

dz

)
=

g

cp
≡ Γd

where Γd is called the dry adiabatic lapse rate.
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Since an air parcel expands as it rises in the atmosphere,
its temperature will decrease with height so that Γd is a
positive quantity.

Substituting g = 9.81ms−2 and cp = 1004JK−1kg−1 gives

Γd =
g

cp
= 0.0098 K m−1 = 9.8 K km−1 ≈ 10 K km−1

which is the dry adiabatic lapse rate.

It should be emphasized again that Γd is the rate of change
of temperature following a parcel of dry air that is being
raised or lowered adiabatically in the atmosphere.

The actual lapse rate of temperature in a column of air,
which we will indicate by

Γ = −dT

dz
,

as measured for example by a radiosonde, averages 6 or
7Kkm−1 in the troposphere, but it takes on a wide range
of values at individual locations.
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Potential Temperature
Definition: The potential temperature θ of an air parcel
is the temperature that the parcel of air would have if it
were expanded or compressed adiabatically from its existing
pressure to a standard pressure of p0 = 1000hPa.

We will derive an expression for the potential temperature
of an air parcel in terms of its pressure p, temperature T ,
and the standard pressure p0.

For an adiabatic transformation (dq = 0) the thermodynamic
equation is

cp dT − α dp = 0

Using the gas equation pα = RT yields

cp dT − RT

p
dp = 0 or

dT

T
=

R

cp

dp

p

8



Integrating from standard ressure p0 (where, by definition,
T = θ) to p (with temperature T ), we write:∫ T

θ

dT

T
=

R

cp

∫ p

p0

dp

p
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Integrating from standard ressure p0 (where, by definition,
T = θ) to p (with temperature T ), we write:∫ T

θ

dT

T
=

R

cp

∫ p

p0

dp

p

Evaluating the integrals, we get:

log

(
T

θ

)
=

R

cp
log

(
p

p0

)
= log

(
p

p0

)R/cp

Taking the exponential (antilog) of both sides

T

θ
=

(
p

p0

)R/cp

Solving for θ,

θ = T

(
p

p0

)−R/cp
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Defining the thermodynamic constant κ = R/cp, we get

θ = T

(
p

p0

)−κ

This equation is called Poisson’s equation.

For dry air, R = Rd = 287JK−1kg−1 and cp = 1004JK−1kg−1.

Recall that, for a diatomic gas, R : cp = 2 : 7, so

κ =
2

7
≈ 0.286

? ? ?
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Recall the thermodynamic equation in the form

ds ≡ dq

T
= cp

dT

T
−R

dp

p
= cp

dθ

θ
(∗)

The quantity ds is the change in entropy (per unit mass).
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Recall the thermodynamic equation in the form

ds ≡ dq

T
= cp

dT

T
−R

dp

p
= cp

dθ
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The quantity ds is the change in entropy (per unit mass).

By definition, diabatic changes have dq = 0.
Therefore, we also have ds = 0 and dθ = 0.

Thus, [
Adiabatic

Changes

]
correspond to

[
Isentropic
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We can write the thermodynamic equation (*) as:

dq
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=

cpT

θ

dθ
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Conservation of θ
Recall the thermodynamic equation in the form

ds ≡ dq

T
= cp

dT

T
−R

dp

p
= cp

dθ

θ
(∗)

The quantity ds is the change in entropy (per unit mass).

By definition, diabatic changes have dq = 0.
Therefore, we also have ds = 0 and dθ = 0.

Thus, [
Adiabatic

Changes

]
correspond to

[
Isentropic

Changes

]
We can write the thermodynamic equation (*) as:

dq

dt
=

cpT

θ

dθ

dt

The potential temperature is constant for adiabatic flow.
The entropy is constant for adiabatic flow.
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Parameters that remain constant during certain transfor-
mations are said to be conserved. Potential temperature is
a conserved quantity for an air parcel that moves around in
the atmosphere under adiabatic conditions.

Potential temperature is an extremely useful parameter in
atmospheric thermodynamics, since atmospheric processes
are often close to adiabatic, in which case θ remains essen-
tially constant.

Later, we will consider a more complicated quantity, the
isentropic potential vorticity, which is approximately con-
served for a broad range of atmospheric conditions.
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Thermodynamic Diagrams
To examine the variation of temperature in the vertical di-
rection, the most obvious approach would be to plot T as a
function of z.

It is customary to use T as the abscissa and z as the ordinate,
to facilitate interpretation of the graph.

For the mean conditions, we obtain the familiar picture,
with the troposphere, stratosphere, mesosphere and ther-
mosphere.
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Atmospheric stratification.
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The Tephigram
There are several specially designed diagrams for depiction
of the vertical structure. The one in common use in Ireland
is the tephigram.

The name derives from T -φ-gram, where φ was an old nota-
tion for entropy. It is a temperature-entropy diagram.

The tephigram was introduced by Napier Shaw (1854–1945),
a British meteorologist, Director of the Met Office.

Shaw founded the Department of Meteorology at Imperial
College London, and was Professor there from 1920 to 1924.
He did much to establish the scientific foundations of mete-
orology.

We owe to Shaw the introduction of the millibar (now re-
placed by the hectoPascal).
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By the first law of thermodynamics, this can be written
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cpdT − αdp
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dT

T
−R

dp

p
(∗)

But recall the definition of potential temperature:

θ = T

(
p

p0

)−κ

or log θ = log T − κ(log p− log p0)

Differentiating and multiplying by cp, we have

cp
dθ

θ
= cp

dT

T
−R

dp

p
(∗∗)

From (*) and (**) it follows that

ds = cp
dθ

θ
= cpd log θ
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Again,
ds = cpd log θ

Integrating from a reference value θ0 where s = s0, we get

s = cp log(θ/θ0) + s0

? ? ?

We will now consider a straightforward plot of T against s
(figure to follow).

The entropy is linearly related to the logarithm of potential
temperature θ. Thus

s = cp log θ + const.

We can thus plot θ instead of s on the vertical axis, on a
logarithmic scale.
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The temperature-entropy diagram or tephigram. The
region of primary interest is indicated by the small box.
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Next, recall the definition of potential temperature:

θ = T

(
p

p0

)−κ

.

Taking logarithms of both sides,

log θ = log T − κ log p + const.

or
s = cp log T −R log p + const.

So, for a constant value of pressure, s is given by the loga-
rithm of temperature. We can plot a series of such curves
of s against T for a range of values of pressure, and get the
picture shown above.

The region of interest for the lower atmopshere is indicated
by a small square. This region is extracted and used in the
design of the tephigram. Since surfaces of constant pressure
are approximately horizontal, it is convenient to rotate the
diagram through 45◦.
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The temperature-entropy diagram or tephigram. Zoom
and rotation of area of interest (Wallace & Hobbs,

1st Edn, p. 96).
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Notes on Tephigram:

• The spacing on the temperature axis is uniform.

• log θ is uniformly spaced, so that θ is not. However, on the
restricted range, the spacing of θ appears nearly uniform.

• The isobars are fairly close to horizontal.

• We can think of the chart as a plot of temperature as a
function of pressure. However, its special design enables
us to deduce stability properties by inspection.

• Lines of constrant temperature are called isotherms.

• Lines of constant potential temperature are called adia-
bats or isentropes.

• Lines of constant pressure are called isobars.
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Extract from the Met Éireann web-site

(9 August, 2004)

A tephigram is a graphical representation of observations of pres-
sure, temperature and humidity made in a vertical sounding of the
atmosphere. Vertical soundings are made using an instrument called
a radiosonde, which contains pressure, temperature and humidity
sensors and which is launched into the atmosphere attached to a
balloon.
The tephigram contains a set of fundamental lines which are used
to describe various processes in the atmosphere. These lines in-
clude:

• Isobars — lines of constant pressure

• Isotherms — lines of constant temperature

• Dry adiabats — related to dry adiabatic processes (potential
temperature constant)

• Saturated adiabats — related to saturated adiabatic processes
(wet bulb potential temperature constant)

On the tephigram there are two kinds of information represented
22



• The environment curves (red) which describes the structure of
the atmosphere

• The process curves (green) which describes what happens to a
parcel of air undergoing a particular type of process (e.g. adi-
abatic process)

In addition, the right hand panel displays height, wind direction
and speed at a selection of pressure levels.
Tephigrams can be used by the forecaster for the following pur-
poses

• to determine moisture levels in the atmosphere

• to determine cloud heights

• to predict levels of convective activity in the atmosphere

• forecast maximum and minimum temperatures

• forecast fog formation and fog clearance
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Sample Tephigram based on radiosode ascent from Valential

Observatory for 1200 UTC, 9 August, 2004.
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