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Lecture 11

Time Integration Methods
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Introduction
• We have studied various simple solutions of the shallow

water equations by making approximations.

• In particular, by means of the perturbation method the
equations have been linearised, making them amenable
to analytical investigation.

• However, to obtain solutions in the general case, it is
necessary to solve the full nonlinear system.

• In numerical weather prediction (NWP) the fully nonlin-
ear primitive equations are solved by numerical means.

• In the atmosphere, the nonlinear advection process is a
dominant factor.

• To get some idea of the methods used, we look at the sim-
ple problem of formulating time-integration algorithms
for the solution of the simple advection equation.
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• The development of accurate and efficient numerical
schemes is a huge area of ongoing research, and we can
do no more than to introduce the subject.

• Much of our research effort in Met Éireann over the past
ten years has been in this area, and a brief outline of this
work will be given.
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Discretization Methods
There are several distinct approaches to the formulation of
computer methods for solving differential equations. We
will confine ourselves to the finite difference methods.

Other approaches include finite element method and the
spectral method.
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Discretization Methods
There are several distinct approaches to the formulation of
computer methods for solving differential equations. We
will confine ourselves to the finite difference methods.

Other approaches include finite element method and the
spectral method.

The central idea of the finite difference approach is to ap-
proximate the derivatives in the equation by differences be-
tween adjacent points in space or time, and thereby reduce
the differential equation to a difference equation.

• An analytical problem becomes an algebraic one.

• A problem with an infinite degree of freedom is replaced
by one with a finite degree of freedom.

• A continuous problem goes over to a discrete one.

5



The Finite Difference Method
We start by looking at the Taylor expansion of f (x):

f (x + ∆x) = f (x) + f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (1)

f (x−∆x) = f (x)− f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (2)

The higher order terms, represented by O(∆x3), become less
important as ∆x becomes smaller.
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The Finite Difference Method
We start by looking at the Taylor expansion of f (x):

f (x + ∆x) = f (x) + f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (1)

f (x−∆x) = f (x)− f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (2)

The higher order terms, represented by O(∆x3), become less
important as ∆x becomes smaller.
We can neglect these and use (1) or (2) to get an approxi-
mation for the derivative of f (x) as follows:

f ′(x) =
f (x + ∆x)− f (x)

∆x
+O(∆x) = fF +O(∆x)

f ′(x) =
f (x)− f (x−∆x)

∆x
+O(∆x) = fB +O(∆x) .

These are called the forward and backward differences.
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The Finite Difference Method
We start by looking at the Taylor expansion of f (x):

f (x + ∆x) = f (x) + f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (1)

f (x−∆x) = f (x)− f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (2)

The higher order terms, represented by O(∆x3), become less
important as ∆x becomes smaller.
We can neglect these and use (1) or (2) to get an approxi-
mation for the derivative of f (x) as follows:

f ′(x) =
f (x + ∆x)− f (x)

∆x
+O(∆x) = fF +O(∆x)

f ′(x) =
f (x)− f (x−∆x)

∆x
+O(∆x) = fB +O(∆x) .

These are called the forward and backward differences.
Keeping only leading terms, we incur errors of order O(∆x).
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We can do better than this: subtracting (2) from (1) yields
the following:

f ′(x) =
f (x + ∆x)− f (x−∆x)

2∆x
+O(∆x2) = fC +O(∆x2)

which is seen to be of order O(∆x2), therefore more accurate
for small ∆x.
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We can do better than this: subtracting (2) from (1) yields
the following:

f ′(x) =
f (x + ∆x)− f (x−∆x)

2∆x
+O(∆x2) = fC +O(∆x2)

which is seen to be of order O(∆x2), therefore more accurate
for small ∆x.

Adding (1) and (2) gives the corresponding expression for
the second derivative:

f ′′(x) =
f (x + ∆x)− 2f (x) + f (x−∆x)

∆x2
+O(∆x2)

These centered differences are of accuracy O(∆x2).
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We can do better than this: subtracting (2) from (1) yields
the following:

f ′(x) =
f (x + ∆x)− f (x−∆x)

2∆x
+O(∆x2) = fC +O(∆x2)

which is seen to be of order O(∆x2), therefore more accurate
for small ∆x.

Adding (1) and (2) gives the corresponding expression for
the second derivative:

f ′′(x) =
f (x + ∆x)− 2f (x) + f (x−∆x)

∆x2
+O(∆x2)

These centered differences are of accuracy O(∆x2).

We can continue taking more and more terms, but obviously
there is a trade-off between accuracy and efficiency.
Fourth-order accurate schemes are sometimes used in NWP,
but second order accuracy is more popular.
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Exercise:

Consider the function f (x) = A sin(2πx/L).
We know that the derivative is (2π/L)A cos(2πx/L).
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Exercise:

Consider the function f (x) = A sin(2πx/L).
We know that the derivative is (2π/L)A cos(2πx/L).

• Show that a forward difference approximation gives

f ′F (x) = (2π/L)A cos[2π(x + ∆x/2)/L] ·
[
sin(π∆x/L)

π∆x/L

]
whereas the centered difference yields:

f ′C(x) = (2π/L)A cos[2πx/L] ·
[
sin(2π∆x/L)

2π∆x/L

]
• Compare these to the true derivative f ′(x) and investigate

their behaviour for small ∆x.

• Demonstrate thus that the centered difference is of higher
order accuracy.
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Grid Resolution and Accuracy
The size of the gridstep ∆x determines the accuracy of the
numerical scheme. For the simple sine function the error
depended on the ratio (∆x/L).

For synoptic scale waves in the atmosphere a typical value
of L is 1000 km. To make the ratio equal to 0.1 we need to
have a grid size of about 100 km. This is larger than the
typical gridsizes used in operational NWP.

The higher the resolution, that is, the smaller the grid-size,
the heavier the computational burden. There is a trade-off
between resolution and accuracy.
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Linear Computational Instability
We consider the equation describing the conservation of a
quantity Y (x, t) following the motion of a fluid flow in one
space dimension:

dY

dt
≡
(
∂Y

∂t
+ u

∂Y

∂x

)
= 0 .
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Linear Computational Instability
We consider the equation describing the conservation of a
quantity Y (x, t) following the motion of a fluid flow in one
space dimension:

dY

dt
≡
(
∂Y

∂t
+ u

∂Y

∂x

)
= 0 .

If the velocity is taken to be constant, u = c, or if we linearise
about a mean flow ū = c, the equation becomes

∂Y

∂t
+ c

∂Y

∂x
= 0 .
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Linear Computational Instability
We consider the equation describing the conservation of a
quantity Y (x, t) following the motion of a fluid flow in one
space dimension:

dY

dt
≡
(
∂Y

∂t
+ u

∂Y

∂x

)
= 0 .

If the velocity is taken to be constant, u = c, or if we linearise
about a mean flow ū = c, the equation becomes

∂Y

∂t
+ c

∂Y

∂x
= 0 .

This simple equation we will call the linear advection equa-
tion. It is analogous to a factor of the usual wave equation(

∂2

∂t2
− c2

∂2

∂x2

)
Y =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
Y = 0 ,

and the general solution is Y = Y (x− ct).
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Since the advection equation is linear, we can construct a
general solution from Fourier components

Y = a exp[ik(x− ct)] ; k = 2π/L .

We take the following initial condition for Y :

Y (x, 0) = a exp[ikx]
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Since the advection equation is linear, we can construct a
general solution from Fourier components

Y = a exp[ik(x− ct)] ; k = 2π/L .

We take the following initial condition for Y :

Y (x, 0) = a exp[ikx]

Next, we approximate the differential equation by a finite
difference equation using centered differences for the space
and time derivatives.
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Since the advection equation is linear, we can construct a
general solution from Fourier components

Y = a exp[ik(x− ct)] ; k = 2π/L .

We take the following initial condition for Y :

Y (x, 0) = a exp[ikx]

Next, we approximate the differential equation by a finite
difference equation using centered differences for the space
and time derivatives.

Let the variables x and t be represented by the horizontal
and vertical axes. Positive time corresponds to the upper
half plane. The initial data occur on the x-axis.

The continuous variables are replaced by discrete gridpoints
at their integral values and the problem is solved on a finite
difference grid.
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Space-Time Grid: Space axis horizontal
Time axis vertical

n = 5 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 4 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 3 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 2 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 1 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 0 +——–+——–+——–+——–+——–+——–+
m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3
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We denote the value of Y at a grid point by:

Y (m∆x, n∆t) = Y nm .

Then the finite difference approximation to the differential
equation may be written as follows:(

Y n+1
m − Y n−1

m

2∆t

)
+ c

(
Y nm+1 − Y nm−1

2∆x

)
= 0 .
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We denote the value of Y at a grid point by:

Y (m∆x, n∆t) = Y nm .

Then the finite difference approximation to the differential
equation may be written as follows:(

Y n+1
m − Y n−1

m

2∆t

)
+ c

(
Y nm+1 − Y nm−1

2∆x

)
= 0 .

Solving for the value at time (n + 1)∆t gives

Y n+1
m = Y n−1

m −
(
c∆t

∆x

)
(Y nm+1 − Y nm−1)

The value at the time (n+1)∆t is obtained by adding a term
to the value at (n−1)∆t; the method is known as the leapfrog
method because of this jump over the time n∆t.
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We denote the value of Y at a grid point by:

Y (m∆x, n∆t) = Y nm .

Then the finite difference approximation to the differential
equation may be written as follows:(

Y n+1
m − Y n−1

m

2∆t

)
+ c

(
Y nm+1 − Y nm−1

2∆x

)
= 0 .

Solving for the value at time (n + 1)∆t gives

Y n+1
m = Y n−1

m −
(
c∆t

∆x

)
(Y nm+1 − Y nm−1)

The value at the time (n+1)∆t is obtained by adding a term
to the value at (n−1)∆t; the method is known as the leapfrog
method because of this jump over the time n∆t.
Note the ratio

λ ≡ c∆t

∆x
.

The value of this will be found to be crucial.
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Inter-dependency of Points

n + 1 + X +

n X O X

n - 1 + X +

m-1 m m+1

The evaluation of the equation at point O involves values of
the variable at points X. Solving for Y n+1

m thus requires

Y n−1
m , Y nm−1 and Y nm+1 .

Note how the leapfrog scheme splits the grid into two independent sub-

grids.
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Solving for the value at time (n + 1)∆t gives

Y n+1
m = Y n−1

m −
(
c∆t

∆x

)
(Y nm+1 − Y nm−1)

Assuming that we know the solution up to time n∆t, the
values at time (n + 1)∆t can be calculated, and the solution
advanced one timestep in this way.
Then the whole procedure can be repeated to advance the
solution to (n + 2)∆t, and so on.
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Solving for the value at time (n + 1)∆t gives

Y n+1
m = Y n−1

m −
(
c∆t

∆x

)
(Y nm+1 − Y nm−1)

Assuming that we know the solution up to time n∆t, the
values at time (n + 1)∆t can be calculated, and the solution
advanced one timestep in this way.
Then the whole procedure can be repeated to advance the
solution to (n + 2)∆t, and so on.

Question: Under what conditions does the solution of the
finite difference equation approximate that of the original
differential equation?
Intuitively, we would expect that a good approximation
would be obtained provided the grid steps ∆x and ∆t are
small enough. However, it turns out that this is not enough,
and that the value of the ratio λ = c∆t/∆x is critical. This
surprising result has important practical implications.
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The CFL Stability Criterion
Let us assume a solution of the finite difference equation in
the form

Y nm = aAn exp[ikm∆x]
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The CFL Stability Criterion
Let us assume a solution of the finite difference equation in
the form

Y nm = aAn exp[ikm∆x]

Substituting this in the equation and dividing by a common
factor gives

A2 + (2iλ sin k∆x)A− 1 = 0

where λ = c∆t/∆x. This is a quadratic equation for the
amplitude A, with solutions

A± = −iλ sin k∆x±
√

1− λ2 sin2 k∆x .
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The CFL Stability Criterion
Let us assume a solution of the finite difference equation in
the form

Y nm = aAn exp[ikm∆x]

Substituting this in the equation and dividing by a common
factor gives

A2 + (2iλ sin k∆x)A− 1 = 0

where λ = c∆t/∆x. This is a quadratic equation for the
amplitude A, with solutions

A± = −iλ sin k∆x±
√

1− λ2 sin2 k∆x .

The roots of a quadratic equation may be either real or
complex, depending on the value of the coefficients.

We consider in turn the two possible cases.
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Case I: |λ| ≤ 1
The quantity under the square-root sign is positive, so the
modulus of A is given by

|A|2 = 1− λ2 sin2 k∆x + (λ sin k∆x)2 = 1 .

The modulus of A is seen to be unity. Thus, we may write

A = exp(iψ) .
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Case I: |λ| ≤ 1
The quantity under the square-root sign is positive, so the
modulus of A is given by

|A|2 = 1− λ2 sin2 k∆x + (λ sin k∆x)2 = 1 .

The modulus of A is seen to be unity. Thus, we may write

A = exp(iψ) .

The two values of the phase are

ψ1 = − arcsin(λ sin k∆x)

and
ψ2 = π − ψ1 .

For small λ, we have

ψ1 ≈ −λk∆x = −kc∆t and ψ2 ≈ π + λk∆x = π + kc∆t
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Case I: |λ| ≤ 1
The quantity under the square-root sign is positive, so the
modulus of A is given by

|A|2 = 1− λ2 sin2 k∆x + (λ sin k∆x)2 = 1 .

The modulus of A is seen to be unity. Thus, we may write

A = exp(iψ) .

The two values of the phase are

ψ1 = − arcsin(λ sin k∆x)

and
ψ2 = π − ψ1 .

For small λ, we have

ψ1 ≈ −λk∆x = −kc∆t and ψ2 ≈ π + λk∆x = π + kc∆t

The solution of the equation may now be written

Y nm =
[
D exp(iψ1n) + E exp[i(−ψ1 + π)n]

]
exp(ikm∆x)

where D and E are arbitrary constants.
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Taking account of the initial conditions, we get the solution

Y nm = (a− E) exp[ik(m∆x + ψ1n/k)]︸ ︷︷ ︸
Physical Mode

+ (−1)nE exp[ik(m∆x− ψ1n/k)]︸ ︷︷ ︸
Computational Mode

Exercise: Check the algebra leading to this solution.
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Taking account of the initial conditions, we get the solution

Y nm = (a− E) exp[ik(m∆x + ψ1n/k)]︸ ︷︷ ︸
Physical Mode

+ (−1)nE exp[ik(m∆x− ψ1n/k)]︸ ︷︷ ︸
Computational Mode

Exercise: Check the algebra leading to this solution.

The first term of this solution is called the physical mode
and corresponds to the solution of the differential equation.

The second term is called the computational mode. It arises
through the use of centered differences resulting in the ap-
proximation of a first order differential equation by a second
order difference equation (with an extra solution).
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Taking account of the initial conditions, we get the solution

Y nm = (a− E) exp[ik(m∆x + ψ1n/k)]︸ ︷︷ ︸
Physical Mode

+ (−1)nE exp[ik(m∆x− ψ1n/k)]︸ ︷︷ ︸
Computational Mode

Exercise: Check the algebra leading to this solution.

The first term of this solution is called the physical mode
and corresponds to the solution of the differential equation.

The second term is called the computational mode. It arises
through the use of centered differences resulting in the ap-
proximation of a first order differential equation by a second
order difference equation (with an extra solution).

If the ratio λ is small, the finite difference solution is given
approximately by

Y ≈ a exp[ik(m∆x− cn∆t)]

which is just the analytical solution. Thus, we would expect
good results from the finite difference approximation in this
case.
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The centered difference approximation cannot be used for
the first timestep because it would involve values at time
t = −∆t which are not known. Instead, we must use another
approximation for the first step, typically an uncentered
forward time step. Thereafter, the leapfrog scheme can be
used.
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The centered difference approximation cannot be used for
the first timestep because it would involve values at time
t = −∆t which are not known. Instead, we must use another
approximation for the first step, typically an uncentered
forward time step. Thereafter, the leapfrog scheme can be
used.

In essence, this amounts to specifing another “initial con-
tition”, the computational initial condition, at t = ∆t. The
value of this determines the amplitude of the computational
mode. It should be chosen to minimize this.

19



The centered difference approximation cannot be used for
the first timestep because it would involve values at time
t = −∆t which are not known. Instead, we must use another
approximation for the first step, typically an uncentered
forward time step. Thereafter, the leapfrog scheme can be
used.

In essence, this amounts to specifing another “initial con-
tition”, the computational initial condition, at t = ∆t. The
value of this determines the amplitude of the computational
mode. It should be chosen to minimize this.

The above solution implies

Y 0
m = a exp(ikm∆x)

Y 1
m = [a exp(iψ1)− 2E cosψ1] exp(ikm∆x)

Requiring E = 0, we find that Y 1
m = exp(iψ1)Y

0
m. In this simple

case, we can eliminate the computational mode. In general,
it is much more difficult.
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Case II: |λ| > 1
Recall that the roots of the quadratic are

A± = −iλ sin k∆x±
√

1− λ2 sin2 k∆x .

If |λ| > 1, there will be some wavelengths for which

λ2 sin2 k∆x > 1 .
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Case II: |λ| > 1
Recall that the roots of the quadratic are

A± = −iλ sin k∆x±
√

1− λ2 sin2 k∆x .

If |λ| > 1, there will be some wavelengths for which

λ2 sin2 k∆x > 1 .

Then the two roots of the quadratic are pure imaginary

A = i
(
−λ sin k∆x±

√
λ2 sin2 k∆x− 1

)
and therefore either |A+| > 1 or |A−| > 1, i.e., the modulus
of one of the roots will exceed unity.
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Case II: |λ| > 1
Recall that the roots of the quadratic are

A± = −iλ sin k∆x±
√

1− λ2 sin2 k∆x .

If |λ| > 1, there will be some wavelengths for which

λ2 sin2 k∆x > 1 .

Then the two roots of the quadratic are pure imaginary

A = i
(
−λ sin k∆x±

√
λ2 sin2 k∆x− 1

)
and therefore either |A+| > 1 or |A−| > 1, i.e., the modulus
of one of the roots will exceed unity.

In that case the amplitude of the corresponding solution
will increase without limit as time increases. That is, the
amplitude of the solution of the finite difference equation
will grow without bound for large time.
This phenomenon is called computational instability.
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In case of computational instability, the solution of the fi-
nite difference equation cannot possibly resemble the phys-
ical solution.

The physical solution remains of constant amplitude for all
time. The numerical solution grows without limit with time.

We thus require that |λ| ≤ 1.
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In case of computational instability, the solution of the fi-
nite difference equation cannot possibly resemble the phys-
ical solution.

The physical solution remains of constant amplitude for all
time. The numerical solution grows without limit with time.

We thus require that |λ| ≤ 1.

The condition for stability is known as the CFL Criterion:

c∆t

∆x
≤ 1

after Courant, Friedichs and Lewy (1928), who first pub-
lished the result.

It implies that, if we refine the space grid, that is, decrease
∆x, we must also shorten the time step ∆t.

Thus, halving the grid size in a two dimensional domain
results in an eightfold increase in computation time.
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Unconditionally Stable Schemes.
A large part of the research effort in Met Éireann recently
has been devoted to the development of integration schemes
which are free of the CFL constraint. The semi-Lagrangian
scheme for advection is based on the idea of approximat-
ing the Lagrangian form of the time derivative. It is so
formulated that the numerical domain of dependence al-
ways includes the physical domain of dependence. This
necessary condition for stability is satisfied automatically
by the scheme. The semi-Lagrangian algorithm has enabled
us to integrate the primitive equations using a time step of
15 minutes. This can be compared to a typical timestep
of 2.5 minutes for conventional schemes. The consequential
saving of computation time means that the operational nu-
merical guidance is available to the forecasters much earlier
than would otherwise be the case.

We discuss semi-Lagrangian schemes in the next lecture.
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