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Lecture 9

Mixed Rossby & Gravity Waves
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Introduction

�We continue our investigation of the
linear solutions of the shallow water
equations.

�First, we compare the properties of the
simple wave solutions already found.

�Then we consider the case where
gravity waves and Rossby waves
occur simultaneously as solutions.

�Finally,, we introduce the concept of
filtering the equations.
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Comparison of Wave Speeds
We can estimate the relative sizes of the phase speeds of
the two types of pure wave solutions for parameter values
typical of the atmosphere. In the absence of a mean flow,
the phase speeds are

cG =
√

Φ̄ =
√

gH ; cR = − β

k2
= −βL2

4π2
.
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Comparison of Wave Speeds
We can estimate the relative sizes of the phase speeds of
the two types of pure wave solutions for parameter values
typical of the atmosphere. In the absence of a mean flow,
the phase speeds are

cG =
√

Φ̄ =
√

gH ; cR = − β

k2
= −βL2

4π2
.

Taking approximate values

g = 10 m s2 , H = 104 m ,

β = 10−11 m−1 s−1 , L = 106 m

the phase speeds are

cG ≈ 300m/s ; cR ≈ 0.5m/s .
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Comparison of Wave Speeds
We can estimate the relative sizes of the phase speeds of
the two types of pure wave solutions for parameter values
typical of the atmosphere. In the absence of a mean flow,
the phase speeds are

cG =
√

Φ̄ =
√

gH ; cR = − β

k2
= −βL2

4π2
.

Taking approximate values

g = 10 m s2 , H = 104 m ,

β = 10−11 m−1 s−1 , L = 106 m

the phase speeds are

cG ≈ 300m/s ; cR ≈ 0.5m/s .

Thus the gravity waves travel much faster than the Rossby

or planetary waves:

|cR| � |cG|
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Even Rossby waves with wavelength L = 107 m , i.e., com-
parable in size to the earth’s radius, have a phase speed of
about 50m/s, still much slower than the gravity waves).
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Even Rossby waves with wavelength L = 107 m , i.e., com-
parable in size to the earth’s radius, have a phase speed of
about 50m/s, still much slower than the gravity waves).

The other crucial distinction between the two types of waves:

�For gravity waves, the divergence is
vital for the dynamics.
The vorticity vanishes.

�For Rossby waves, the vorticity is the
important quantity.
The divergence vanishes.
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Mixed Gravity & Rossby Waves
We consider now a more complicated case in which both
gravity waves and Rossby waves are present. To keep things
as simple as possible, we ignore variations with latitude
(i.e., in the y-direction).
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Mixed Gravity & Rossby Waves
We consider now a more complicated case in which both
gravity waves and Rossby waves are present. To keep things
as simple as possible, we ignore variations with latitude
(i.e., in the y-direction).

Then the divergence, vorticity and continuity equations for
the linearized perturbation variables are:

α

(
∂δ

∂t
+ ū

∂δ

∂x

)
− fζ + βu + Φxx = 0(

∂ζ

∂t
+ ū

∂ζ

∂x

)
+ fδ + βv = 0(

∂Φ

∂t
+ ū

∂Φ

∂x

)
+ v

∂Φ̄

∂y
+ Φ̄

∂u

∂x
= 0 .

Here δ = ux, ζ = vx and the basic state satisfies fū = −Φ̄y.
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Mixed Gravity & Rossby Waves
We consider now a more complicated case in which both
gravity waves and Rossby waves are present. To keep things
as simple as possible, we ignore variations with latitude
(i.e., in the y-direction).

Then the divergence, vorticity and continuity equations for
the linearized perturbation variables are:

α

(
∂δ

∂t
+ ū

∂δ

∂x

)
− fζ + βu + Φxx = 0(

∂ζ

∂t
+ ū

∂ζ

∂x

)
+ fδ + βv = 0(

∂Φ

∂t
+ ū

∂Φ

∂x

)
+ v

∂Φ̄

∂y
+ Φ̄

∂u

∂x
= 0 .

Here δ = ux, ζ = vx and the basic state satisfies fū = −Φ̄y.

Exercise: Check that these equations are correct.
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The coefficient α normally has the value 1. It is a tracer,
which is carried through the analysis as a parameter, and
allows us to examine the effect of omitting the term dδ/dt
in the divergence equation by giving it the value zero in the
final result. (This is just a handy trick to avoid repetition).
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The coefficient α normally has the value 1. It is a tracer,
which is carried through the analysis as a parameter, and
allows us to examine the effect of omitting the term dδ/dt
in the divergence equation by giving it the value zero in the
final result. (This is just a handy trick to avoid repetition).

We are interested in wave-like solutions of the form:u
v
Φ

 =

u0
v0
Φ0

 exp[ik(x− ct)]

so that u = δ/ik, v = ζ/ik and the differential operators are:

∂

∂x
∼ ik ;

∂2

∂x2
∼ −k2 ;

∂

∂t
∼ −ikc .
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The coefficient α normally has the value 1. It is a tracer,
which is carried through the analysis as a parameter, and
allows us to examine the effect of omitting the term dδ/dt
in the divergence equation by giving it the value zero in the
final result. (This is just a handy trick to avoid repetition).

We are interested in wave-like solutions of the form:u
v
Φ

 =

u0
v0
Φ0

 exp[ik(x− ct)]

so that u = δ/ik, v = ζ/ik and the differential operators are:

∂

∂x
∼ ik ;

∂2

∂x2
∼ −k2 ;

∂

∂t
∼ −ikc .

The form of the basic state allows us to write

vΦ̄y =
ζ

ik
(−fū) = −

(
fū

ik

)
ζ .
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We can now substitute the exponential expression for the
dependent variables into the equations, which may then be
written in matrix form:

−f α[ik(ū− c)] +
β

ik
−k2

[ik(u− c) +
β

ik
] +f 0

−fū

ik
Φ̄ ik(ū− c)




ζ

δ

Φ

 = 0 .
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We can now substitute the exponential expression for the
dependent variables into the equations, which may then be
written in matrix form:

−f α[ik(ū− c)] +
β

ik
−k2

[ik(u− c) +
β

ik
] +f 0

−fū

ik
Φ̄ ik(ū− c)




ζ

δ

Φ

 = 0 .

Since this is a homogeneous system, there is a solution iff
the determinant of the coeficient matrix vanishes. Expand-
ing out this gives us the dispersion equation:[

α(ū− c)− β

k2

]2

(ū− c)−

[
f2

k2
+ Φ̄

]
(ū− c) +

[
f2

k2
ū + Φ̄

β

k2

]
= 0

This is a cubic equation for the phase speed c.
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We can now substitute the exponential expression for the
dependent variables into the equations, which may then be
written in matrix form:

−f α[ik(ū− c)] +
β

ik
−k2

[ik(u− c) +
β

ik
] +f 0

−fū

ik
Φ̄ ik(ū− c)




ζ

δ

Φ

 = 0 .

Since this is a homogeneous system, there is a solution iff
the determinant of the coeficient matrix vanishes. Expand-
ing out this gives us the dispersion equation:[

α(ū− c)− β

k2

]2

(ū− c)−

[
f2

k2
+ Φ̄

]
(ū− c) +

[
f2

k2
ū + Φ̄

β

k2

]
= 0

This is a cubic equation for the phase speed c.
We can solve the cubic analytically or numerically. How-
ever, a simpler way is to note the relative sizes of the terms
and estimate the roots approximately.
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High Frequency Roots
First, suppose the magnitude of the phase speed is large.
Specifically, let us suppose

|ū− c| � |ū| and |ū− c| � |β/k2| .
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High Frequency Roots
First, suppose the magnitude of the phase speed is large.
Specifically, let us suppose

|ū− c| � |ū| and |ū− c| � |β/k2| .
Then we may neglect f2ū/k2 compared to (f2/k2)(ū− c), and
also the terms involving β. The cubic then reduces to[

α(ū− c)2 −

(
f2

k2
+ Φ̄

)]
(ū− c) = 0 .
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High Frequency Roots
First, suppose the magnitude of the phase speed is large.
Specifically, let us suppose

|ū− c| � |ū| and |ū− c| � |β/k2| .
Then we may neglect f2ū/k2 compared to (f2/k2)(ū− c), and
also the terms involving β. The cubic then reduces to[

α(ū− c)2 −

(
f2

k2
+ Φ̄

)]
(ū− c) = 0 .

The solution c = ū cannot be admitted, as we have assumed

that c is large. Thus, the quadratic term must vanish, giving

the two roots:

c = ū±
√

Φ̄ +
f 2

k2
.

These are the inertia-gravity wave solutions.
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In the case of no rotation, the inertia-gravity wave phase
speed

c = ū±

√
Φ̄ +

f2

k2

reduces to that for pure gravity wave solutions with

c = ū±
√

Φ̄ .

In this case the phase speed is independent of the wave-
length (or wavenumber k). More generally, the phase speed
is modified by the effect of rotation and depends on k, mak-
ing the waves dispersive.
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In the case of no rotation, the inertia-gravity wave phase
speed

c = ū±

√
Φ̄ +

f2

k2

reduces to that for pure gravity wave solutions with

c = ū±
√

Φ̄ .

In this case the phase speed is independent of the wave-
length (or wavenumber k). More generally, the phase speed
is modified by the effect of rotation and depends on k, mak-
ing the waves dispersive.

Taking typical parameter values, we find that the phase
speed of these solutions is of the order c = 300m/s. Thus,
our assumptions are justified a posteriori.
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In the case of no rotation, the inertia-gravity wave phase
speed

c = ū±

√
Φ̄ +

f2

k2

reduces to that for pure gravity wave solutions with

c = ū±
√

Φ̄ .

In this case the phase speed is independent of the wave-
length (or wavenumber k). More generally, the phase speed
is modified by the effect of rotation and depends on k, mak-
ing the waves dispersive.

Taking typical parameter values, we find that the phase
speed of these solutions is of the order c = 300m/s. Thus,
our assumptions are justified a posteriori.

Exercise: Calculate the group velocity of the
inertia-gravity waves.

Group velocity is defined two frames below
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Low Frequency Roots
Next, suppose the phase speed is small, specifically that it
is much smaller than the pure gravity wave speed:

c2 � Φ̄ and also |ū− c|2 � Φ̄ .
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Low Frequency Roots
Next, suppose the phase speed is small, specifically that it
is much smaller than the pure gravity wave speed:

c2 � Φ̄ and also |ū− c|2 � Φ̄ .

We also recall that the pure Rossby speed (β/k2) is very
much smaller that the gravity wave speed. Thus, the cubic
term in the dispersion equation can be neglected compared
to the linear term and the equation becomes

−

[
f2

k2
+ Φ̄

]
(ū− c) +

[
f2

k2
ū + Φ̄

β

k2

]
= 0 .
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Low Frequency Roots
Next, suppose the phase speed is small, specifically that it
is much smaller than the pure gravity wave speed:

c2 � Φ̄ and also |ū− c|2 � Φ̄ .

We also recall that the pure Rossby speed (β/k2) is very
much smaller that the gravity wave speed. Thus, the cubic
term in the dispersion equation can be neglected compared
to the linear term and the equation becomes

−

[
f2

k2
+ Φ̄

]
(ū− c) +

[
f2

k2
ū + Φ̄

β

k2

]
= 0 .

This has the following solution

c = ū−

(
β + f2ū/Φ̄

k2 + f2/Φ̄

)
.

For typical values of Φ̄, say 105 m2s−2, we find that c is quite
small, thereby justifying our assumptions.
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This solution is, of course, the Rossby wave solution, which
always travels westward relative to the mean flow:

c = ū−

(
β + f2ū/Φ̄

k2 + f2/Φ̄

)
.

For large values of Φ̄, it is approximated by the previously
obtained simple formula

c = ū− β

k2
.
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This solution is, of course, the Rossby wave solution, which
always travels westward relative to the mean flow:

c = ū−

(
β + f2ū/Φ̄

k2 + f2/Φ̄

)
.

For large values of Φ̄, it is approximated by the previously
obtained simple formula

c = ū− β

k2
.

Exercise: Calculate the group velocity of the Rossby waves.

Definition: The group velocity cg for a wave in the x-
direction is defined by

cg =
∂ω

∂k
=

∂kc

∂k
.
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Filtering
In the above analysis, we used a tracer α to mark the term

dδ

dt
=

(
∂δ

∂t
+ ū

∂δ

∂x

)
in the divergence equation.
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Filtering
In the above analysis, we used a tracer α to mark the term

dδ

dt
=

(
∂δ

∂t
+ ū

∂δ

∂x

)
in the divergence equation.

If we now set α = 0, the dispersion equation becomes linear
and only the Rossby wave solution remains.
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In the above analysis, we used a tracer α to mark the term

dδ

dt
=

(
∂δ

∂t
+ ū

∂δ

∂x

)
in the divergence equation.

If we now set α = 0, the dispersion equation becomes linear
and only the Rossby wave solution remains.

To rephrase, omission of the term corresponding to changes
in the divergence is sufficient (in the present case) to elim-
inate solutions corresponding to gravity waves.
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Filtering
In the above analysis, we used a tracer α to mark the term

dδ

dt
=

(
∂δ

∂t
+ ū

∂δ

∂x

)
in the divergence equation.

If we now set α = 0, the dispersion equation becomes linear
and only the Rossby wave solution remains.

To rephrase, omission of the term corresponding to changes
in the divergence is sufficient (in the present case) to elim-
inate solutions corresponding to gravity waves.

This process of modifying the governing equations in such
a way as to exclude certain solutions is called filtering.
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The Quasi-geostrophic Equations
The question arises: How can we generalise this idea? How
can the general nonlinear equations be modified so that the
high frequency gravity wave solutions are eliminated, while
the low frequency Rossby waves, which are the important
solutions, are preserved?
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The Quasi-geostrophic Equations
The question arises: How can we generalise this idea? How
can the general nonlinear equations be modified so that the
high frequency gravity wave solutions are eliminated, while
the low frequency Rossby waves, which are the important
solutions, are preserved?

This question will not be addressed in this lecture series,
but an affirmative answer can be obtained. The equations
resulting from the filtering procedure are called the Quasi-
geostrophic Equations.
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The Quasi-geostrophic Equations
The question arises: How can we generalise this idea? How
can the general nonlinear equations be modified so that the
high frequency gravity wave solutions are eliminated, while
the low frequency Rossby waves, which are the important
solutions, are preserved?

This question will not be addressed in this lecture series,
but an affirmative answer can be obtained. The equations
resulting from the filtering procedure are called the Quasi-
geostrophic Equations.

The quasi-geostrophic equations provide a powerful basis
for the elucidation of the dynamics of the atmosphere in
middle latitudes.
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