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Lecture 8

Linear Wave Solutions
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Introduction

In this lecture we will investigate the wave solutions of the
linearized Shallow Water Equations (SWE).

The equations are linearized by the perturbation method:

• The dependent variables are separated into mean
and perturbation components

• The mean state is assumed to be known and constant in
time

• The perturbations are assumed to be of small amplitude,
so that quadratic and higher terms in them can be ignored

• The system then becomes a linear system in the
perturbation variables.
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The Basic State
Recall from previous work that the Shallow Water
Equations are

du

dt
− fv +

∂Φ

∂x
= 0

dv

dt
+ fu +

∂Φ

∂y
= 0

dΦ

dt
+ Φ

(
∂u

∂x
+

∂v

∂y

)
= 0

The total time derivative is:
d

dt
=

∂

∂t
+ V · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

The independent variables are

• x: Zonal (eastward) coordinate

• y: Meridional (northward) coordinate

• t: Time.
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The dependent variables are

• u: Zonal (west-to-east) component of the wind

• v: Meridional (south-to-north) component of the wind

• Φ: Geopotential, Φ = gh where h is depth/height.
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The dependent variables are

• u: Zonal (west-to-east) component of the wind

• v: Meridional (south-to-north) component of the wind

• Φ: Geopotential, Φ = gh where h is depth/height.

The Basic State

We consider a basic state of constant zonal (east-west) flow
ū, independent of time and of the space coordinates, and a
corresponding basic geopotential field Φ̄

The shallow water equations for this state reduce to

fū +
∂Φ̄

∂y
= 0 ; v = 0 ,

That is, the basic state is in geostrophic balance.
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The Perturbation Equations
Consider a small perturbation of the basic state

u = ū + u′(x, y, t)

v = v′(x, y, t)

Φ = Φ̄(y) + Φ′(x, y, t)

We assume that

|u′| � ū , |v′| � ū , |Φ′| � Φ̄

Thus, squares and higher powers in the perturbations or
primed quantities can be neglected.
The equations for the primed quantities can then be
linearized.
This is essential for the progress of our analysis. In gen-
eral, linear equations may be solved analytically, whereas
nonlinear equations must be treated numerically.
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Substituting the assumed form of the solution into the SWE,
The perturbation equations take the following form:(

∂u′

∂t
+ ū

∂u′

∂x

)
− fv′ +

∂Φ′

∂x
= 0(

∂v′

∂t
+ ū

∂v′

∂x

)
+ fu′ +

∂Φ′

∂y
= 0(

∂Φ′

∂t
+ ū

∂Φ′

∂x

)
+ Φ̄

(
∂u′

∂x
+

∂v′

∂y

)
= 0
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Substituting the assumed form of the solution into the SWE,
The perturbation equations take the following form:(

∂u′

∂t
+ ū

∂u′

∂x

)
− fv′ +

∂Φ′

∂x
= 0(

∂v′

∂t
+ ū

∂v′

∂x

)
+ fu′ +

∂Φ′

∂y
= 0(

∂Φ′

∂t
+ ū

∂Φ′

∂x

)
+ Φ̄

(
∂u′

∂x
+

∂v′

∂y

)
= 0

In the special case of vanishing mean zonal flow (ū = 0):

∂u′

∂t
− fv′ +

∂Φ′

∂x
= 0

∂v′

∂t
+ fu′ +

∂Φ′

∂y
= 0

∂Φ′

∂t
+ Φ̄

(
∂u′

∂x
+

∂v′

∂y

)
= 0

These are called the Laplace Tidal Equations.
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Divergence and Vorticity
It is straightforward to derive divergence and vorticity equa-
tions for the perturbation variables.
Recall the definitions of divergence and vorticity:

δ =

(
∂u′

∂x
+

∂v′

∂y

)
; ζ =

(
∂v′

∂x
− ∂u′

∂y

)
.
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Divergence and Vorticity
It is straightforward to derive divergence and vorticity equa-
tions for the perturbation variables.
Recall the definitions of divergence and vorticity:

δ =

(
∂u′

∂x
+

∂v′

∂y

)
; ζ =

(
∂v′

∂x
− ∂u′

∂y

)
.

Adding the x-derivative of the u′-equation to the y-derivative
of the v′-equation gives an equation for the divergence:

∂δ

∂t
+ ū

∂δ

∂x
− fζ + βu′ +∇2Φ = 0 .
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Divergence and Vorticity
It is straightforward to derive divergence and vorticity equa-
tions for the perturbation variables.
Recall the definitions of divergence and vorticity:

δ =

(
∂u′

∂x
+

∂v′

∂y

)
; ζ =

(
∂v′

∂x
− ∂u′

∂y

)
.

Adding the x-derivative of the u′-equation to the y-derivative
of the v′-equation gives an equation for the divergence:

∂δ

∂t
+ ū

∂δ

∂x
− fζ + βu′ +∇2Φ = 0 .

Subtracting the x-derivative of the v′-equation from the
y-derivative of the u′-equation gives an equation for the
vorticity:

∂ζ

∂t
+ ū

∂ζ

∂x
+ fδ + βv′ = 0 .
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The vorticity equation may also be written in the form:

d

dt
(ζ + f ) + fδ = 0 .

This equation expresses the Conservation of absolute vor-
ticity.

Exercise:

Fill in the missing steps in the derivation of the vorticity
and divergence equations.

? ? ? ? ?

Note: from now on, the primes on u′, etc., are omitted.
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General Remarks on Wave Motion

To have wave motion it is necessary to have some restoring
mechanism, so that a particle which is disturbed from an
equilibrium position will be induced to return there.

Examples of restoring forces are the elastic force in springs,
gravity acting on a pendulum, electrostatic and electromag-
netic forces in oscillating circuits, negative feedbacks in bi-
ological systems, etc.

We will consider some restoring forces important in the
atmosphere.
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Compressibility: If a fluid is compressible, the increase in
pressure of a parcel of fluid which is compressed will tend
to make it expand again. This effect can result in compres-
sion or sound waves propagating through the fluid. In the
present context (for the Shallow Water Equations) we have
assumed that the fluid is incompressible. Thus, sound waves
have been eliminated as possible solutions.
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Gravity: If the fluid surface is not horizontal, there will
be pressure forces due to differing masses of fluid above
different points, i.e., there will be a pressure gradient from
deep to shallow parts of the fluid. This will tend to push
fluid away from places where the surface is elevated towards
regions where it is depressed. This tendency to even out
disturbances in the height field can lead to gravity waves.
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Compressibility: If a fluid is compressible, the increase in
pressure of a parcel of fluid which is compressed will tend
to make it expand again. This effect can result in compres-
sion or sound waves propagating through the fluid. In the
present context (for the Shallow Water Equations) we have
assumed that the fluid is incompressible. Thus, sound waves
have been eliminated as possible solutions.

Gravity: If the fluid surface is not horizontal, there will
be pressure forces due to differing masses of fluid above
different points, i.e., there will be a pressure gradient from
deep to shallow parts of the fluid. This will tend to push
fluid away from places where the surface is elevated towards
regions where it is depressed. This tendency to even out
disturbances in the height field can lead to gravity waves.

The beta-effect: The variation in the planetary vorticity f ,
which we have denoted by β, combined with the conserva-
tion of absolute vorticity, amounts to a restoring force and
results in the Rossby waves which we will study below.
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Longitudinal v. Transverse waves:
We have eliminated the longitudinal waves by the assump-
tion of incompressibility. Transverse waves may be primar-
ily vertical or horizontal. However, there is something of a
paradox: How can pure transverse waves (i.e., waves hav-
ing no velocity component in the direction of travel of the
waves) exist in an inviscid fluid?
Since there is no shearing force, there seems to be no way of
communicating the wave motion orthogonally to the flow.
Yet such waves do exist in the atmosphere! (The argument
of their non-existence is used in seismology to deduce the
liquid nature of the earth’s core).

Exercise:

Try to resolve this paradox.

Note: A gadankenexperiment may be productive even if it
does not yield the result that is sought.
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Pure Types of Wave Solution
I: Vertical Transverse Solutions: Gravity Waves
Let us assume that the mean flow ū is zero, and consider
motions in an east-west plane. Moreover, we neglect the
effect of rotation. Thus

f ≡ 0 ; v ≡ 0 ;
∂

∂y
≡ 0

13



Pure Types of Wave Solution
I: Vertical Transverse Solutions: Gravity Waves
Let us assume that the mean flow ū is zero, and consider
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∂u
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Pure Types of Wave Solution
I: Vertical Transverse Solutions: Gravity Waves
Let us assume that the mean flow ū is zero, and consider
motions in an east-west plane. Moreover, we neglect the
effect of rotation. Thus

f ≡ 0 ; v ≡ 0 ;
∂

∂y
≡ 0

The perturbation equations reduce to

∂u

∂t
+

∂Φ

∂x
= 0

∂Φ

∂t
+ Φ̄

∂u

∂x
= 0

We can immediately eliminate u and derive an equation for
Φ:

∂2Φ

∂t2
− Φ̄

∂2Φ

∂x2
= 0

(Exercise: Show that the same equation governs u.)
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This is the familiar wave equation, usually appearing as

∂2Φ

∂x2
=

1

c2

∂2Φ

∂t2

and it has solutions of the general form

Φ = Φ1(x− ct) + Φ2(x + ct) .

The wave phase speed c is given by

c = ±
√

Φ̄
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This is the familiar wave equation, usually appearing as

∂2Φ

∂x2
=

1

c2

∂2Φ

∂t2

and it has solutions of the general form

Φ = Φ1(x− ct) + Φ2(x + ct) .

The wave phase speed c is given by

c = ±
√

Φ̄

Exercise: Repeat the analysis with a mean flow ū, and show
that the wave speed is now given by c = ū±

√
Φ̄.

Exercise: Take the scale-height of the atmosphere,
H ≈ 10km as the mean depth. Calculate the gravity-wave
speed in this case.

Exercise: If the duck-pond in St. Stephen’s Green has depth
h = 1m, at what speed do the waves on the pond travel?
Check by observation!

14



To examine the structure of the gravity wave solutions, let
us consider a single sinusoidal component:{u

Φ

}
=

{
u0

Φ0

}
exp[ik(x− ct)] .

Note: It is analytically convenient to consider a complex
exponential solution, but the physical solution is the real
part of this expression.
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To examine the structure of the gravity wave solutions, let
us consider a single sinusoidal component:{u

Φ

}
=

{
u0

Φ0

}
exp[ik(x− ct)] .

Note: It is analytically convenient to consider a complex
exponential solution, but the physical solution is the real
part of this expression.

The differential operators now have the following expres-
sion:

∂

∂x
∼ ik ;

∂

∂t
∼ −ikc

and the wave equations for u and Φ become(
∂2

∂t2
− Φ̄

∂2

∂x2

){u

Φ

}
= −[k2(c2 − Φ̄)]

{
u0

Φ0

}
eik(x−ct) = 0 .

Clearly, this implies c = ±
√

Φ̄.

15



The divergence and vorticity reduce to

δ = (ux + vy) = iku

ζ = (vx − uy) ≡ 0

(recall that ∂/∂y ≡ 0.)
Note: Pure gravity waves are irrotational, with vanishing
vorticity.
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The divergence and vorticity reduce to

δ = (ux + vy) = iku

ζ = (vx − uy) ≡ 0

(recall that ∂/∂y ≡ 0.)
Note: Pure gravity waves are irrotational, with vanishing
vorticity.

The momentum equation gives the relationship between u
and Φ:

∂u

∂t
+

∂Φ

∂x
= 0 ⇒ −ikcu + ikφ = 0 ⇒ u =

Φ

c
.

Thus, for c > 0, i.e., eastward-moving waves, the perturba-
tion wind u and geopotential (or height) are positive and
negative together:

Where the fluid is elevated, the movement is eastward.
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Recall that we consider only the real part of the complex
expressions for u and Φ to be physically significant.

Thus, the physical solutions for geopotential, zonal wind
and divergence are

Φ = <{Φ0 exp[ik(x− ct)]} = Φ0 cos[k(x− ct)]

u = <{u0 exp[ik(x− ct)]} = (Φ0/c) cos[k(x− ct)]
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Recall that we consider only the real part of the complex
expressions for u and Φ to be physically significant.

Thus, the physical solutions for geopotential, zonal wind
and divergence are

Φ = <{Φ0 exp[ik(x− ct)]} = Φ0 cos[k(x− ct)]

u = <{u0 exp[ik(x− ct)]} = (Φ0/c) cos[k(x− ct)]

For c > 0, they are in phase. The divergence is

δ = <{iku0 exp[ik(x− ct)]} = (−kΦ0/c)sin[k(x− ct)]

It is 90◦ out of phase with u and Φ. Thus, maxima and
minima in the divergence are a quarter wavelength west of
peaks and troughs in the height field. That is, maximum
divergence is west of a peak, and maximum convergence to
the east. Therefore, the mass flux will cause the peak to
move eastward (see Figure).
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The essential mechanism for the propagation of gravity waves
is the change of pressure due to varying weight of fluid above
a given horizontal surface.
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Exercises:

(1) Repeat the above description of the relative phases of
the Φ, u and δ fields in the case where c < 0, i.e., for west-
ward wave propagation.

(2) Derive the vertical velocity, and combine it with the
zonal velocity u to describe the particle trajectories.
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II: Horizontal Transverse Solutions: Rossby waves
These solutions are of central importance in meteorology
and oceanography. They are also found in other rotating
‘fluid’ systems, for example, galaxies.
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II: Horizontal Transverse Solutions: Rossby waves
These solutions are of central importance in meteorology
and oceanography. They are also found in other rotating
‘fluid’ systems, for example, galaxies.

We will use the vorticity and divergence equations, in which
the β-term occurs explicitly. We consider the simplest case:

• We ignore all variations with latitude (i.e., in the y di-
rection) except for the β-term.

• We seek solutions for which the motion is purely hori-
zontal

• We will also assume that the zonal velocity is constant,
ū, and that the perturbation zonal velocity u′ vanishes
identically

• This implies purely transverse wave motion (i.e., no com-
ponent of perturbation velocity in the direction of travel
of the wavefronts)
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We have

u ≡ 0 ;
∂

∂y
≡ 0 ; w ≡ 0 ;

The divergence and vorticity become

δ = (ux + vy) ≡ 0 ; ζ = (vx − uy) = vx .
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We have

u ≡ 0 ;
∂

∂y
≡ 0 ; w ≡ 0 ;

The divergence and vorticity become

δ = (ux + vy) ≡ 0 ; ζ = (vx − uy) = vx .

Recall the perturbation divergence and vorticity equations:

∂δ

∂t
+ ū

∂δ

∂x
− fζ + βu +∇2Φ = 0 .

∂ζ

∂t
+ ū

∂ζ

∂x
+ fδ + βv = 0 .

The divergence equation reduces to a diagnostic relation-
ship:

fζ = ∇2Φ .

This equivalent to geostrophic balance:

fv = Φx ⇒ fvx = Φxx .
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The vorticity equation becomes

∂ζ

∂t
+ ū

∂ζ

∂x
+ βv = 0 ,

This may be written in terms of the meridional velocity v:

∂

∂t

∂v

∂x
+ ū

∂2v

∂x2
+ βv = 0 .
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The vorticity equation becomes
∂ζ

∂t
+ ū

∂ζ

∂x
+ βv = 0 ,

This may be written in terms of the meridional velocity v:

∂

∂t

∂v

∂x
+ ū

∂2v

∂x2
+ βv = 0 .

Now let us assume a sinusoidal variation of v with time and
the x coordinate:

v = v0 exp[ik(x− ct)] .

Substituting this into the vorticity equation, we get[
k2(c− ū) + β

]
v = 0

which can hold only if the quantity in square brackets van-

ishes. This gives us an expression for the phase speed:

c = ū− β

k2
.
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The dispersion relationship

c = ū− β

k2
.

is the celebrated Rossby wave formula.

The wavenumber k and wavelength L are related by

k = 2π/L. Thus the phase speed can also be written

c = ū− βL2

4π2
.
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The dispersion relationship

c = ū− β

k2
.

is the celebrated Rossby wave formula.

The wavenumber k and wavelength L are related by

k = 2π/L. Thus the phase speed can also be written

c = ū− βL2

4π2
.

The geostrophic balance gives a relationship between v and
Φ:

fv = Φx = ikΦ ; Φ = −(if/k)v

So, assuming v is real and considering the real parts of the
solution, we get

v = v0 cos[k(x− ct)]

Φ = (fv0/k) sin[k(x− ct)]
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Schematic figure of Rossby wave structure.
Top: Vertical section. Bottom: Horizontal section.
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Predominantly Zonal Flow
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Meandering Pattern Develops
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Strongly Meridional Regime
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Cut-off Low. Return to zonal Regime
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Properties of Rossby Waves
Rossby waves always move westward relative to the flow.
They are the prototype of the large scale wavelike distur-
bances in the atmosphere. The motion is horizontal and
there is geostrophic balance between the pressure or height
disturbance and the wind field. The divergence vanishes
identically under the assumptions we have made.
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They are the prototype of the large scale wavelike distur-
bances in the atmosphere. The motion is horizontal and
there is geostrophic balance between the pressure or height
disturbance and the wind field. The divergence vanishes
identically under the assumptions we have made.

In the absence of rotation, these wave solutions do not exist;
they owe their existence to the effects of rotation and their
westward movement to the latitudinal gradient of the ver-
tical component of the planetary vorticity f , i.e., the beta
effect.
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Properties of Rossby Waves
Rossby waves always move westward relative to the flow.
They are the prototype of the large scale wavelike distur-
bances in the atmosphere. The motion is horizontal and
there is geostrophic balance between the pressure or height
disturbance and the wind field. The divergence vanishes
identically under the assumptions we have made.

In the absence of rotation, these wave solutions do not exist;
they owe their existence to the effects of rotation and their
westward movement to the latitudinal gradient of the ver-
tical component of the planetary vorticity f , i.e., the beta
effect.

The dynamics of the planetary waves were first elucidated
by the Swedish meteorologist Carl-Gustav Rossby, around
1940, using the principle of conservation of absolute vortic-
ity.
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Summary of Properties of Rossby Waves

• The solutions derive from the principle of
conservation of absolute vorticity

• They owe their existence to the rotation Ω of the Earth

• The dynamics were first elucidated by Carl-Gustav Rossby

• They waves always move westward relative to ū

• The motion is purely horizontal

• The meridional wind is in geostrophic balance

• The divergence vanishes identically
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Exercises
Exercise: Consider the conservation absolute vorticity

d

dt
(ζ + f ) = 0 .

Linearize this equation about a constant mean flow ū (don’t
forget the beta term!) and assume a wavelike solution with
dependency proportional to exp[ik(x−ct)]. Deduce the Rossby
wave formula

c = ū− β

k2
= ū− βL2

4π2
.

Exercise: Find the phase speed of a Rossby wave, assuming
that β = 10−11 m−1 s−1, and that the wavelength is 3,000km,
Exercise: Show that the vorticity equation

∂

∂t

∂v

∂x
+ ū

∂2v

∂x2
+ βv = 0 .

is a hyperbolic partial differential equation (PDE).
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