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Lecture 5

Steady Vortical Flows
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The Taylor-Proudman Theorem
In deriving the Shallow Water Equations, we made the
assumption that the horizontal velocity is independent of
depth.

Although dynamically consistent, this may seem an artificial
limitation. However, we will show that rotation acts as a
constraint on the flow, so that under certain circumstances,
variations in the direction of the spin axis are resisted.
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The Taylor-Proudman Theorem
In deriving the Shallow Water Equations, we made the
assumption that the horizontal velocity is independent of
depth.

Although dynamically consistent, this may seem an artificial
limitation. However, we will show that rotation acts as a
constraint on the flow, so that under certain circumstances,
variations in the direction of the spin axis are resisted.

Theorem.
For incompressible, inviscid, hydrostatic, geostrophic flow
on an f-plane, the velocity is independent of height.

Proof.
We assume the density is constant. We also ignore varia-
tions of the Coriolis parameter f .

We assume geostrophic and hydrostatic balance:

fk×V =
1

ρ
∇p ,

∂p

∂z
= −gρ .
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Taking the curl of the geostrophic equation (f constant):

∇× (k×V) = 0
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Taking the curl of the geostrophic equation (f constant):

∇× (k×V) = 0

Let us compute the components in Cartesian coordinates:

∇×(−v, u, 0) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
−v u 0

∣∣∣∣∣∣ =

(
−∂u

∂z
,−∂v

∂z
,
∂u

∂x
+

∂v

∂y

)
= 0 .
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Taking the curl of the geostrophic equation (f constant):

∇× (k×V) = 0

Let us compute the components in Cartesian coordinates:
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−∂u
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∂u
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+

∂v
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Combining this with the continuity equation ∇ ·V = 0 we
get

∂u

∂z
=

∂v

∂z
=

∂w

∂z
= 0 .
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Taking the curl of the geostrophic equation (f constant):
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−∂u

∂z
,−∂v

∂z
,
∂u
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+

∂v

∂y

)
= 0 .

Combining this with the continuity equation ∇ ·V = 0 we
get

∂u

∂z
=

∂v

∂z
=

∂w

∂z
= 0 .

This result indicates that, under the assumptions of the
theorem, the motion is quasi-two-dimensional, with velocity
independent of depth. If the bottom is flat, w ≡ 0.
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Taking the curl of the geostrophic equation (f constant):

∇× (k×V) = 0

Let us compute the components in Cartesian coordinates:

∇×(−v, u, 0) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
−v u 0

∣∣∣∣∣∣ =

(
−∂u

∂z
,−∂v

∂z
,
∂u

∂x
+

∂v

∂y

)
= 0 .

Combining this with the continuity equation ∇ ·V = 0 we
get

∂u

∂z
=

∂v

∂z
=

∂w

∂z
= 0 .

This result indicates that, under the assumptions of the
theorem, the motion is quasi-two-dimensional, with velocity
independent of depth. If the bottom is flat, w ≡ 0.

The result surprised G. I. Taylor, who wrote [Taylor, 1923]:
“The idea appears fantastic, but the experiments . . . show
that the motion does, in fact, approximate to this curious
type”.
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The CSU Spin Tank
The Taylor-Proudman Theorem can be demonstrated beau-
tifully by means of spin-tank experiments.

A Spin-tank or rotating dish-pan has been constructed at
Colorado State University to demonstrate various geophys-
ical fluid phenomena. It was built with a small budget
($3000) and is portable.
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The CSU Spin Tank
The Taylor-Proudman Theorem can be demonstrated beau-
tifully by means of spin-tank experiments.

A Spin-tank or rotating dish-pan has been constructed at
Colorado State University to demonstrate various geophys-
ical fluid phenomena. It was built with a small budget
($3000) and is portable.

A description of the spin-tank at CSU is given at
http://einstein.atmos.colostate.edu/∼mcnoldy/spintank/
At this site, a number of experiments are described. There
are several MPEG loops showing the results of these exper-
iments.

See also the article in Bull. Amer. Met. Soc., December,
2003.
This Journal is freely available online.
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Taylor-Proudman Column

Schematic diagram of tank

Taylor-Proudman Column
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Simple Steady-state Solutions
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Polar Coordinates
The flow will be assumed to be axially or circularly sym-
metric, and it is convenient to introduce (cylindrical) polar
coordinates.
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Polar Coordinates
The flow will be assumed to be axially or circularly sym-
metric, and it is convenient to introduce (cylindrical) polar
coordinates.

Let R and θ be the radial distance and azimuthal angle.

Let U and V be radial and azimuthal components of velocity.
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Axially Symmetric Steady Flow
We will study some steady-state or time-independent solu-
tions.
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Axially Symmetric Steady Flow
We will study some steady-state or time-independent solu-
tions.

We assume that the radial velocity vanishes: U ≡ 0.

We assume a steady state:

∂V

∂t
= 0 ,

∂p

∂t
= 0 .

We assume axial symmetry:

∂V

∂θ
= 0 ,

∂p

∂θ
= 0 .
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∂t
= 0 .
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∂V

∂θ
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∂p

∂θ
= 0 .

Definition:
Flow with fV > 0 is called cyclonic.
Flow with fV < 0 is called anticyclonic.
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Axially Symmetric Steady Flow
We will study some steady-state or time-independent solu-
tions.

We assume that the radial velocity vanishes: U ≡ 0.

We assume a steady state:

∂V

∂t
= 0 ,

∂p

∂t
= 0 .

We assume axial symmetry:

∂V

∂θ
= 0 ,

∂p

∂θ
= 0 .

Definition:
Flow with fV > 0 is called cyclonic.
Flow with fV < 0 is called anticyclonic.

Exercise: Show that cyclonic motion spins in the same
sense as the earth, and anti-cyclonic motion spins in the
opposite sense.
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Some Vector Calculus
For polar (cylindrical) coordinates, we have

∇Φ =
∂Φ

∂R
i +

1

R

∂Φ

∂θ
j

∇ ·V =

(
1

R

∂(RU)

∂R
+

1

R

∂V

∂θ

)
k · ∇ ×V =

(
1

R

∂(RV )

∂R
− 1

R

∂U

∂θ

)
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Some Vector Calculus
For polar (cylindrical) coordinates, we have

∇Φ =
∂Φ

∂R
i +

1

R

∂Φ

∂θ
j

∇ ·V =

(
1

R

∂(RU)

∂R
+

1

R

∂V

∂θ

)
k · ∇ ×V =

(
1

R

∂(RV )

∂R
− 1

R

∂U

∂θ

)
Since we have assumed U ≡ 0, the divergence and vorticity
become

δ ≡ ∇ ·V =
1

R

∂V

∂θ
= 0

ζ ≡ k · ∇ ×V =
1

R

∂(RV )

∂R
=

∂V

∂R
+

V

R
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Some Vector Calculus
For polar (cylindrical) coordinates, we have

∇Φ =
∂Φ

∂R
i +

1

R

∂Φ

∂θ
j

∇ ·V =

(
1

R

∂(RU)

∂R
+

1

R

∂V

∂θ

)
k · ∇ ×V =

(
1

R

∂(RV )

∂R
− 1

R

∂U

∂θ

)
Since we have assumed U ≡ 0, the divergence and vorticity
become

δ ≡ ∇ ·V =
1

R

∂V

∂θ
= 0

ζ ≡ k · ∇ ×V =
1

R

∂(RV )

∂R
=

∂V

∂R
+

V

R

For solid body rotation, V = ωR where the angular velocity
ω is constant. Then the vorticity becomes

ζ =
∂(ωR)

∂R
+

ωR

R
= 2ω .
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The directions of the unit vectors change with θ:

∂ i

∂θ
= j ,

∂ j

∂θ
= −i .
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The directions of the unit vectors change with θ:

∂ i

∂θ
= j ,

∂ j

∂θ
= −i .

The advection may be calculated: V = U i + V j, so

V · ∇V =

(
U

∂

∂R
+

V

R

∂

∂θ

)
(U i + V j)

=

(
U

∂U

∂R
+

V

R

∂U

∂θ

)
i +

(
U

∂V

∂R
+

V

R

∂V

∂θ

)
j

+U2 ∂ i

∂R
+

UV

R

∂ i

∂θ
+ UV

∂ j

∂R
+

V 2

R

∂ j

∂θ
.
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The directions of the unit vectors change with θ:

∂ i

∂θ
= j ,

∂ j

∂θ
= −i .

The advection may be calculated: V = U i + V j, so

V · ∇V =

(
U

∂

∂R
+

V

R

∂

∂θ

)
(U i + V j)

=

(
U

∂U

∂R
+

V

R

∂U

∂θ

)
i +

(
U

∂V

∂R
+

V

R

∂V

∂θ

)
j

+U2 ∂ i

∂R
+

UV

R

∂ i

∂θ
+ UV

∂ j

∂R
+

V 2

R

∂ j

∂θ
.

When we assume azimuthal symmetry and vanishing radial
velocity, all terms except the last one vanish:

V · ∇V = −V 2

R
i .

This is the usual expression for the centripetal acceleration.
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The Coriolis term is

fk×V = fk×(U i + V j) = −fV i + fU j .
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The Coriolis term is

fk×V = fk×(U i + V j) = −fV i + fU j .

The pressure gradient force is

1

ρ
∇p =

1

ρ

(
∂p

∂R
i +

1

R

∂p

∂θ
j

)
or g∇h = g

(
∂h

∂R
i +

1

R

∂h

∂θ
j

)
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The Coriolis term is

fk×V = fk×(U i + V j) = −fV i + fU j .

The pressure gradient force is

1

ρ
∇p =

1

ρ

(
∂p

∂R
i +

1

R

∂p

∂θ
j

)
or g∇h = g

(
∂h

∂R
i +

1

R

∂h

∂θ
j

)
The balance of forces in the radial direction now becomes

V 2

R
+ fV − g

∂h

∂R
= 0 . (∗)

In the azimuthal direction, all terms vanish.

? ? ?
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The Coriolis term is

fk×V = fk×(U i + V j) = −fV i + fU j .

The pressure gradient force is

1

ρ
∇p =

1

ρ

(
∂p

∂R
i +

1

R

∂p

∂θ
j

)
or g∇h = g

(
∂h

∂R
i +

1

R

∂h

∂θ
j

)
The balance of forces in the radial direction now becomes

V 2

R
+ fV − g

∂h

∂R
= 0 . (∗)

In the azimuthal direction, all terms vanish.

? ? ?

We will look at several solutions of (*).
But first, we digress to consider Natural Coordinates.
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Aside: Natural Coordinates
Let s be a unit vector parallel to the velocity V, and let n
be a unit vector perpendicular to s, pointing to its left.
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Aside: Natural Coordinates
Let s be a unit vector parallel to the velocity V, and let n
be a unit vector perpendicular to s, pointing to its left.
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Aside: Natural Coordinates
Let s be a unit vector parallel to the velocity V, and let n
be a unit vector perpendicular to s, pointing to its left.

Let R be the radius of curvature of the streamline. If the
centre of curvature is in the direction of n, we take R pos-
itive, and call the flow cyclonic. For R < 0, we call it anti-
cyclonic flow. (NHS Convention)
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We write the velocity as V = V s where V = ds/dt is the
speed. Note that both V and s vary along the trajectory.

Positive curvature (R > 0) means flow turning to the left.
Negative curvature (R < 0) means flow turning to the right.

Exercise: Show that
ds

ds
=

n

R
.
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We write the velocity as V = V s where V = ds/dt is the
speed. Note that both V and s vary along the trajectory.

Positive curvature (R > 0) means flow turning to the left.
Negative curvature (R < 0) means flow turning to the right.

Exercise: Show that
ds

ds
=

n

R
.

In a distance ∆s along the curve, the flow turns through and angle
θ = ∆s/R.

The unit vector s turns through the same angle, while its length remains
unchanged. Therefore θ = |∆s|. Moreover, this gives

|∆s|
∆s

=
1

R

The direction of ∆s is the same as n for positive R and opposite for
negative R. Therefore

ds

ds
=

n

R
.

which is the desired result.
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The rate of change of s along the trajectory is

ds

ds
=

n

R
, so that

ds

dt
=

ds

ds

ds

dt
= V

n

R
.
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The rate of change of s along the trajectory is

ds

ds
=

n

R
, so that

ds

dt
=

ds

ds

ds

dt
= V

n

R
.

Then the acceleration is

dV

dt
=

d(V s)

dt
=

(
dV

dt
s + V

ds

dt

)
=

(
dV

dt
s +

V 2

R
n

)
.
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The rate of change of s along the trajectory is

ds

ds
=

n

R
, so that

ds

dt
=

ds

ds

ds

dt
= V

n

R
.

Then the acceleration is

dV

dt
=

d(V s)

dt
=

(
dV

dt
s + V

ds

dt

)
=

(
dV

dt
s +

V 2

R
n

)
.

The balance of forces perpendicular to V is:

V 2

R
+ fV + g

∂h

∂n
= 0 . (∗∗)

Equation (**) is equivalent to the result obtained above
using polar coordinates.
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The results in polar coordinates and natural coordinates
must agree. However, they appear different, because the
sign conventions are different.
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The results in polar coordinates and natural coordinates
must agree. However, they appear different, because the
sign conventions are different.

To avoid confusion, we state the conventions here:
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The results in polar coordinates and natural coordinates
must agree. However, they appear different, because the
sign conventions are different.

To avoid confusion, we state the conventions here:

In Natural Coordinates:

• The quantity V (the speed) is always positive

• The radius of curvature R may be positive or negative

19



The results in polar coordinates and natural coordinates
must agree. However, they appear different, because the
sign conventions are different.

To avoid confusion, we state the conventions here:

In Natural Coordinates:

• The quantity V (the speed) is always positive

• The radius of curvature R may be positive or negative

In Polar Coordinates:

• The quantity V may be positive or negative

• The radius R is always positive

We will not use natural coordinates. They are described
above because they appear in Holton’s text.
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Geostrophic Balance (Ro � 1)
The balance of forces perpendicular to V is:

V 2

R
+ fV − g

∂h

∂R
= 0 .
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Geostrophic Balance (Ro � 1)
The balance of forces perpendicular to V is:

V 2

R
+ fV − g

∂h

∂R
= 0 .

For synoptic flow, the centrifugal force is small:

V 2

R
� fV ⇐⇒ Ro =

V

fR
� 1 ;

Thus,

V = VGeos ≡
g

f

∂h

∂R

This is a state of geostrophic balance, as discussed already.
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Geostrophic Balance (Ro � 1)
The balance of forces perpendicular to V is:

V 2

R
+ fV − g

∂h

∂R
= 0 .

For synoptic flow, the centrifugal force is small:

V 2

R
� fV ⇐⇒ Ro =

V

fR
� 1 ;

Thus,

V = VGeos ≡
g

f

∂h

∂R

This is a state of geostrophic balance, as discussed already.

The flow is cyclonic around low pressure and
anticyclonic around high pressure.
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Geostrophically balanced flow around low and high pressure.
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Digression: Tidal Range in Irish Sea

Within the Irish Sea, the maximum tidal ranges occur on
the Lancashire and Cumbria coasts, where the mean spring
tides have a range of 8m. At Carnsore Point, the range is
less than 2m.
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Morecambe Bay

Morecambe Bay is broad and
shallow and has a large tidal
range of up to 10.5 metres.

The Bay is always changing
with waves, tides and cur-
rents moving sediment from
the Irish Sea into the embay-
ment. Muds and silts settle,
forming banks and marshes,
whose edges are shaped by
wandering river channels.

Shoreline Managament Plan
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Cyclostrophic Balance (Ro � 1)
Recall the balance of forces perpendicular to V:

V 2

R
+ fV − g

∂h

∂R
= 0 .
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Cyclostrophic Balance (Ro � 1)
Recall the balance of forces perpendicular to V:

V 2

R
+ fV − g

∂h

∂R
= 0 .

Let us assume the Coriolis term is negligible:

V 2

R
− g

∂h

∂R
= 0 ; V = ±

√
gR

∂h

∂R
.
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Cyclostrophic Balance (Ro � 1)
Recall the balance of forces perpendicular to V:

V 2

R
+ fV − g

∂h

∂R
= 0 .

Let us assume the Coriolis term is negligible:

V 2

R
− g

∂h

∂R
= 0 ; V = ±

√
gR

∂h

∂R
.

This is cyclostrophic balance. For V to be real, we must
have ∂h/∂R > 0, i.e., low pressure at the centre!
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Cyclostrophic Balance (Ro � 1)
Recall the balance of forces perpendicular to V:

V 2

R
+ fV − g

∂h

∂R
= 0 .

Let us assume the Coriolis term is negligible:

V 2

R
− g

∂h

∂R
= 0 ; V = ±

√
gR

∂h

∂R
.

This is cyclostrophic balance. For V to be real, we must
have ∂h/∂R > 0, i.e., low pressure at the centre!

The centrifugal force is much bigger than the Coriolis force:

V 2

R
� fV , which implies Ro ≡ V

2ΩL
=

V

fR
� 1 .

Cyclostrophic balance is found in small vortices.
It may be cyclonic or anticyclonic.
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Example: A Toy Tornado
The centrifugal term is important in tornado dynamics.
[1] Calculate the Rossby Number for typical scale values.
[2] Calculate the variation of depth with radius.

? ? ?
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Example: A Toy Tornado
The centrifugal term is important in tornado dynamics.
[1] Calculate the Rossby Number for typical scale values.
[2] Calculate the variation of depth with radius.

? ? ?

[1] We take the velocity and length scales to be V = 30ms−1

and L = 300m. Assuming f = 10−4 s−1, we have

Ro ≡ V

fL
=

30

10−4 · 300
= 103 � 1 .

Almost every tornado is found to rotate cyclonically. How-
ever, there are documented cases of rotation in an anti-
cyclonic direction.

Smaller vortices such as dust devils are found to rotate in-
differently in both directions.
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[2] Let us assume solid-body rotation, ω = V/r constant.
This is not very realistic, but is done to simplify the anal-
ysis.
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[2] Let us assume solid-body rotation, ω = V/r constant.
This is not very realistic, but is done to simplify the anal-
ysis.

The balance of forces (Centrifugal = Pressure Gradient)
gives

V 2

R
− g

∂h

∂R
= 0 or ω2R− g

∂h

∂R
= 0 .
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[2] Let us assume solid-body rotation, ω = V/r constant.
This is not very realistic, but is done to simplify the anal-
ysis.

The balance of forces (Centrifugal = Pressure Gradient)
gives

V 2

R
− g

∂h

∂R
= 0 or ω2R− g

∂h

∂R
= 0 .

This gives the pressure gradient:

∂h

∂R
=

ω2

g
R

and we can integrate this from 0 to R to get

h = h0 +
ω2

2g
R2

which is a parabolic profile. This completes the solution.

? ? ?
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[2] Let us assume solid-body rotation, ω = V/r constant.
This is not very realistic, but is done to simplify the anal-
ysis.

The balance of forces (Centrifugal = Pressure Gradient)
gives

V 2

R
− g

∂h

∂R
= 0 or ω2R− g

∂h

∂R
= 0 .

This gives the pressure gradient:

∂h

∂R
=

ω2

g
R

and we can integrate this from 0 to R to get

h = h0 +
ω2

2g
R2

which is a parabolic profile. This completes the solution.

? ? ?

Stir your coffee rapidly. Study the shape of the surface.
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Exercise: Down the Plug-hole
A popular legend holds that water draining from a bath
spins cyclonically, that is, counter-clockwise in the northern
hemisphere.
Show that this is a myth.

? ? ?
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Exercise: Down the Plug-hole
A popular legend holds that water draining from a bath
spins cyclonically, that is, counter-clockwise in the northern
hemisphere.
Show that this is a myth.

? ? ?

We take the velocity and length scales to be V = 1ms−1 and L = 1m.
Assuming f = 10−4 s−1, we have

Ro ≡ V

fL
=

1

10−4 · 1
= 104 � 1 .

Thus, the Coriolis effect is completely negligible at this scale:∣∣Coriolis force
∣∣� ∣∣Centrifugal force

∣∣
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We take the velocity and length scales to be V = 1ms−1 and L = 1m.
Assuming f = 10−4 s−1, we have

Ro ≡ V

fL
=

1

10−4 · 1
= 104 � 1 .

Thus, the Coriolis effect is completely negligible at this scale:∣∣Coriolis force
∣∣� ∣∣Centrifugal force

∣∣
Experiments confirm that the two spin directions are equally likely.

The balance in the bath is cyclostrophic, not geostrophic.

27



Exercise: Down the Plug-hole
A popular legend holds that water draining from a bath
spins cyclonically, that is, counter-clockwise in the northern
hemisphere.
Show that this is a myth.

? ? ?

We take the velocity and length scales to be V = 1ms−1 and L = 1m.
Assuming f = 10−4 s−1, we have

Ro ≡ V

fL
=

1

10−4 · 1
= 104 � 1 .

Thus, the Coriolis effect is completely negligible at this scale:∣∣Coriolis force
∣∣� ∣∣Centrifugal force

∣∣
Experiments confirm that the two spin directions are equally likely.

The balance in the bath is cyclostrophic, not geostrophic.

Extremely delicate laboratory conditions are required to achieve a pref-
erence for cyclonic rotation on the bathroom scale.
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Inertial Balance
Once more, the balance of forces is:

V 2

R
+ fV − g

∂h

∂R
= 0 .
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Inertial Balance
Once more, the balance of forces is:

V 2

R
+ fV − g

∂h

∂R
= 0 .

If the pressure force is neglected, we get

V 2

R
+ fV = 0 , which implies V = −fR .

This is inertial flow. Since, by convention, R > 0 we must
have fV < 0. That is, inertial flow is anticyclonic.
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Inertial Balance
Once more, the balance of forces is:

V 2

R
+ fV − g

∂h

∂R
= 0 .

If the pressure force is neglected, we get

V 2

R
+ fV = 0 , which implies V = −fR .

This is inertial flow. Since, by convention, R > 0 we must
have fV < 0. That is, inertial flow is anticyclonic.

The angular velocity is independent of radius: ω = V/R =
−f . This implies solid body rotation. The period for revo-
lution is

T =
2π

f
≈ 17.5hours at 45◦N .

This is the time taken by a Foucault Pendulum to rotate
through 180◦ and is called a half pendulum day.
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Inertial oscillations are relatively unimportant in the atmo-
sphere, where pressure gradients are rarely negligible, but
are more important in the ocean.
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Inertial oscillations are relatively unimportant in the atmo-
sphere, where pressure gradients are rarely negligible, but
are more important in the ocean.

They are normally superimposed on a background flow, lead-
ing to cycloidal patterns such as shown below.
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Gradient Balance
When all terms are retained, we have Gradient balance:

V 2

R
+ fV − g

∂h

∂R
= 0 .
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Gradient Balance
When all terms are retained, we have Gradient balance:

V 2

R
+ fV − g

∂h

∂R
= 0 .

Using the definition of geostrophic wind VGeos = (g/f )∂h/∂R,
this becomes

V 2

R
+ f (V − VGeos) = 0 . (∗)
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Gradient Balance
When all terms are retained, we have Gradient balance:

V 2

R
+ fV − g

∂h

∂R
= 0 .

Using the definition of geostrophic wind VGeos = (g/f )∂h/∂R,
this becomes

V 2

R
+ f (V − VGeos) = 0 . (∗)

We may solve this quadratic equation for the wind speed:

V =
1

2

[
−fR±

√
f2R2 + 4fRVGeos

]
.

30



Gradient Balance
When all terms are retained, we have Gradient balance:

V 2

R
+ fV − g

∂h

∂R
= 0 .
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+ f (V − VGeos) = 0 . (∗)

We may solve this quadratic equation for the wind speed:

V =
1

2

[
−fR±

√
f2R2 + 4fRVGeos

]
.

For a given pressure gradient, there are two possible solu-
tions, one regular and one anomalous. Not all solutions are
physically possible.
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Gradient Balance
When all terms are retained, we have Gradient balance:

V 2

R
+ fV − g

∂h

∂R
= 0 .

Using the definition of geostrophic wind VGeos = (g/f )∂h/∂R,
this becomes

V 2

R
+ f (V − VGeos) = 0 . (∗)

We may solve this quadratic equation for the wind speed:

V =
1

2

[
−fR±

√
f2R2 + 4fRVGeos

]
.

For a given pressure gradient, there are two possible solu-
tions, one regular and one anomalous. Not all solutions are
physically possible.

N.B. A strong anticyclonic gradient ∂h/∂R � 0 implies
fVGeos � 0 so that V is complex. Strong gradients are not
found near high pressure centres in the atmosphere.
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For cyclonic flow the gradient wind speed is less than the
geostrophic speed; for anti-cyclonic flow it is greater. This
follows from (*):

V = VGeos −
V 2

fR
.

So,

• Cyclonic flow (fV > 0): |V | < |VGeos| (Sub-geostrophic)

• Anticylonic flow (fV < 0): |V | > |VGeos| (Super-geostrophic)
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For cyclonic flow the gradient wind speed is less than the
geostrophic speed; for anti-cyclonic flow it is greater. This
follows from (*):

V = VGeos −
V 2

fR
.

So,

• Cyclonic flow (fV > 0): |V | < |VGeos| (Sub-geostrophic)

• Anticylonic flow (fV < 0): |V | > |VGeos| (Super-geostrophic)

Exercise:
Show that, for a given wind speed, the pressure gradient is greater when

the flow is cyclonic, and less when the flow is anti-cyclonic. Discuss the

implications of this for synoptic analysis.

For a more comprehensive discussion of gradient balance,
read Holton, Chapter 3.
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Exercises
(1) Download a weather chart with isobars and winds.

• Study how the flow direction and speed depend on the
pressure gradient.

• Locate a similar map for the southern hemisphere.

• Find a similar map for the tropics. How are the pressure
and wind fields related near the equator?
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(1) Download a weather chart with isobars and winds.

• Study how the flow direction and speed depend on the
pressure gradient.

• Locate a similar map for the southern hemisphere.

• Find a similar map for the tropics. How are the pressure
and wind fields related near the equator?

(2) Search for “Coriolis Force”. Look for animations that
show the effect of this deflecting force.
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• Study how the flow direction and speed depend on the
pressure gradient.

• Locate a similar map for the southern hemisphere.

• Find a similar map for the tropics. How are the pressure
and wind fields related near the equator?

(2) Search for “Coriolis Force”. Look for animations that
show the effect of this deflecting force.

(3) Search for an example of an anomalous tornado, that
is, a tornado with anticyclonic circulation. Does it differ in
any way from the usual cyclonic tornadoes?
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Exercises
(1) Download a weather chart with isobars and winds.

• Study how the flow direction and speed depend on the
pressure gradient.

• Locate a similar map for the southern hemisphere.

• Find a similar map for the tropics. How are the pressure
and wind fields related near the equator?

(2) Search for “Coriolis Force”. Look for animations that
show the effect of this deflecting force.

(3) Search for an example of an anomalous tornado, that
is, a tornado with anticyclonic circulation. Does it differ in
any way from the usual cyclonic tornadoes?

(4) Visit the site describing the CSU Spin-tank
http://einstein.atmos.colostate.edu/∼mcnoldy/spintank/

and study the movie loops there.
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