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Lecture 4

The Shallow Water Equations
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Physical Laws of the Atmosphere
NEWTON’S LAWS OF MOTION
Describe how the change of velocity is determined by the
pressure gradient, Coriolis force and friction
GAS LAW, or EQUATION OF STATE
Relates the pressure, temperature and density
CONSERVATION OF MASS
Continuity Equation: air neither created nor distroyed
CONSERVATION OF WATER
Continuity Equation for water (liquid, solid and gas)
CONSERVATION OF ENERGY
Thermodynamic Equation determines changes of tempera-
ture due to heating, compression, etc.

Seven equations; seven variables (u, v, w, ρ, p, T, q).

3



The Primitive Equations
du

dt
−

(
f +

u tan φ

a

)
v +

1

ρ

∂p

∂x
+ Fx = 0

dv

dt
+

(
f +

u tan φ

a

)
u +

1

ρ

∂p

∂y
+ Fy = 0

∂p

∂z
+ gρ = 0

p = RρT
∂ρ

∂t
+∇ · ρV = 0

∂ρw

∂t
+∇ · ρwV = [Sources− Sinks]

dT

dt
+ (γ − 1)T∇ ·V =

Q̇

cp
These equations are suitable for a forecast or climate model.
For understanding the dynamics, we need to simplify them.

Check: Look at the above equations. How many have we got so far?
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Equations in Component Form
The equations of motion in the rotating frame are

dV

dt
+ 2Ω×V +

1

ρ
∇p− g = 0 .

Next we split the equation of motion into components.
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Equations in Component Form
The equations of motion in the rotating frame are

dV

dt
+ 2Ω×V +

1

ρ
∇p− g = 0 .

Next we split the equation of motion into components.

We introduce local cartesian coordinates (x, y, z).

V = (u, v, w)

dV/dt = (du/dt, dv/dt, dw/dt)

g = (0, 0,−g)

∇p = (∂p/∂x, ∂p/∂y, ∂p/∂z)

Ω = (0, Ω cos φ, Ω sin φ)

2Ω×V = (2wΩ cos φ− 2vΩ sin φ, 2uΩ sin φ,−2uΩ cos φ)

Note: Certain trigonometric terms have been omitted from the acceleration.
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Equations in Component Form
The equations of motion in the rotating frame are

dV

dt
+ 2Ω×V +

1

ρ
∇p− g = 0 .

Next we split the equation of motion into components.

We introduce local cartesian coordinates (x, y, z).

V = (u, v, w)

dV/dt = (du/dt, dv/dt, dw/dt)

g = (0, 0,−g)

∇p = (∂p/∂x, ∂p/∂y, ∂p/∂z)

Ω = (0, Ω cos φ, Ω sin φ)

2Ω×V = (2wΩ cos φ− 2vΩ sin φ, 2uΩ sin φ,−2uΩ cos φ)

Note: Certain trigonometric terms have been omitted from the acceleration.

We assume w is much smaller than u and v, and we can
neglect the term 2wΩ cos φ in the Coriolis force.
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The variables x and y are distances eastward and northward
on the globe. We will ignore the effects of sphericity except
in the Coriolis term (see below). Then (x, y, z) are equivalent
to Cartesian coordinates.

? ? ?

Coordinate System Components of Ω
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The horizontal components of the equation of motion may
now be written:

du

dt
− fv +

1

ρ

∂p

∂x
= 0

dv

dt
+ fu +

1

ρ

∂p

∂y
= 0

where f = 2Ω sin φ is called the Coriolis parameter.
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The horizontal components of the equation of motion may
now be written:

du

dt
− fv +

1

ρ

∂p

∂x
= 0

dv

dt
+ fu +

1

ρ

∂p

∂y
= 0

where f = 2Ω sin φ is called the Coriolis parameter.

The vertical component of the equation of motion is

dw

dt
− 2Ωu cos φ +

1

ρ

∂p

∂z
+ g = 0 .
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The horizontal components of the equation of motion may
now be written:

du

dt
− fv +

1

ρ

∂p

∂x
= 0

dv

dt
+ fu +

1

ρ

∂p

∂y
= 0

where f = 2Ω sin φ is called the Coriolis parameter.

The vertical component of the equation of motion is
dw

dt
− 2Ωu cos φ +

1

ρ

∂p

∂z
+ g = 0 .

In the absence of motion, this reduces to the hydrostatic
equation,

∂p

∂z
+ ρg = 0 ,

expressing a balance between the vertical pressure gradient
and gravity.

Note that horizontal component of Ω no longer enters the
equations, and we write 2Ω = fk.
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For large-scale motions, the hydrostatic equation is an ex-
cellent approximation to the full vertical equation, and we
adopt it from now on.

? ? ?

As already remarked, the majority of numerical models as-
sume hydrostatic balance. However, as the grid-scales are
refined below about 5km, this assumption becomes les justi-
fied. Thus, non-hydrostatic models have been gaining pop-
ularity in recent years.

? ? ?
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For large-scale motions, the hydrostatic equation is an ex-
cellent approximation to the full vertical equation, and we
adopt it from now on.

? ? ?

As already remarked, the majority of numerical models as-
sume hydrostatic balance. However, as the grid-scales are
refined below about 5km, this assumption becomes les justi-
fied. Thus, non-hydrostatic models have been gaining pop-
ularity in recent years.

? ? ?

The equations will now be further simplified, and we will
derive the system known as the Shallow Water Equations.
For a review, read Pedlosky, §§3.1, 3.2 and 3.3.

? ? ?

As a consequence of spherical geometry, there are additional
small terms involving trigonometric functions. These will be
omitted, as the resulting errors are small.
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The Beta-plane approximation
We restate the momentum and continuity equations:

du

dt
− fv +

1

ρ

∂p

∂x
= 0

dv

dt
+ fu +

1

ρ

∂p

∂y
= 0

∂p

∂z
+ ρg = 0

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

These are four equations for four dependent variables.

The β-plane approximation: We neglect sphericity except
in the Coriolis parameter f = 2Ω sin φ.

Thus, the geometric terms arising from the sphericity of the
earth are omitted. Only the dynamical effect, the variation
of the vertical component of Ω, is included.
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Eliminating the Vertical Velocity
We will now eliminate the vertical velocity w, thereby re-
ducing the system to three equations for three variables.
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Eliminating the Vertical Velocity
We will now eliminate the vertical velocity w, thereby re-
ducing the system to three equations for three variables.

Let h(x, y) be the height of the free surface at point (x, y).
We integrate the hydrostatic equation between z and h:∫ h

z

∂p

∂z
dz +

∫ h

z
ρg dz = 0 or p(z)− p(h) = ρg(h− z)

(recall that density ρ is assumed to be constant). Thus, the
pressure is given by the weight of fluid above a point.
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Eliminating the Vertical Velocity
We will now eliminate the vertical velocity w, thereby re-
ducing the system to three equations for three variables.

Let h(x, y) be the height of the free surface at point (x, y).
We integrate the hydrostatic equation between z and h:∫ h

z

∂p

∂z
dz +

∫ h

z
ρg dz = 0 or p(z)− p(h) = ρg(h− z)

(recall that density ρ is assumed to be constant). Thus, the
pressure is given by the weight of fluid above a point.

We assume that the pressure p0 = p(h) at the top of the fluid
layer is a constant. Then p0 does not enter the dynamics:

p(z) = p0 + ρg(h− z) , for each point (x, y) .
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Eliminating the Vertical Velocity
We will now eliminate the vertical velocity w, thereby re-
ducing the system to three equations for three variables.

Let h(x, y) be the height of the free surface at point (x, y).
We integrate the hydrostatic equation between z and h:∫ h

z

∂p

∂z
dz +

∫ h

z
ρg dz = 0 or p(z)− p(h) = ρg(h− z)

(recall that density ρ is assumed to be constant). Thus, the
pressure is given by the weight of fluid above a point.

We assume that the pressure p0 = p(h) at the top of the fluid
layer is a constant. Then p0 does not enter the dynamics:

p(z) = p0 + ρg(h− z) , for each point (x, y) .

The gradient of pressure may now be related to the slope
of the free surface:

1

ρ

∂p

∂x
= g

∂h

∂x
;

1

ρ

∂p

∂y
= g

∂h

∂y
.
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In vector notation, this is

1

ρ
∇p = g∇h

We can now write the (horizontal) equations of motion as

dV

dt
+ 2Ω×V +∇Φ = 0 .

where Φ = gh is the geopotential.

N.B. From now on, V denotes the horizontal velocity (u, v, 0).

? ? ?
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In vector notation, this is

1

ρ
∇p = g∇h

We can now write the (horizontal) equations of motion as

dV

dt
+ 2Ω×V +∇Φ = 0 .

where Φ = gh is the geopotential.

N.B. From now on, V denotes the horizontal velocity (u, v, 0).

? ? ?

• We next assume that, at some initial time, the velocity
(u, v) is independent of depth, z.
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dt
+ 2Ω×V +∇Φ = 0 .

where Φ = gh is the geopotential.

N.B. From now on, V denotes the horizontal velocity (u, v, 0).

? ? ?

• We next assume that, at some initial time, the velocity
(u, v) is independent of depth, z.

• Examining the equations for u and v, we note that the
accelerations do not vary with depth z.
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In vector notation, this is

1

ρ
∇p = g∇h

We can now write the (horizontal) equations of motion as

dV

dt
+ 2Ω×V +∇Φ = 0 .

where Φ = gh is the geopotential.

N.B. From now on, V denotes the horizontal velocity (u, v, 0).

? ? ?

• We next assume that, at some initial time, the velocity
(u, v) is independent of depth, z.

• Examining the equations for u and v, we note that the
accelerations do not vary with depth z.

• Therefore, the velocity will remain independent of depth
for all time.
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Integrated Continuity Equation
Next, we integrate the continuity equation through the full
depth of the fluid. Since u and v are constant with z,∫ h

0

(
∂u

∂x
+

∂v

∂y

)
dz = h

(
∂u

∂x
+

∂v

∂y

)
.
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Integrated Continuity Equation
Next, we integrate the continuity equation through the full
depth of the fluid. Since u and v are constant with z,∫ h

0

(
∂u

∂x
+

∂v

∂y

)
dz = h

(
∂u

∂x
+

∂v

∂y

)
.

The third term of the continuity equation integrates to∫ h

0

(
∂w

∂z

)
dz = w(h)− w(0) =

dh

dt
.

Here we have assumed that the bottom boundary is flat, so
that the vertical velocity there vanishes: w(0) = 0.
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Integrated Continuity Equation
Next, we integrate the continuity equation through the full
depth of the fluid. Since u and v are constant with z,∫ h

0

(
∂u

∂x
+

∂v

∂y

)
dz = h

(
∂u

∂x
+

∂v

∂y

)
.

The third term of the continuity equation integrates to∫ h

0

(
∂w

∂z

)
dz = w(h)− w(0) =

dh

dt
.

Here we have assumed that the bottom boundary is flat, so
that the vertical velocity there vanishes: w(0) = 0.

Combining terms, the integrated continuity equation is:

dh

dt
+ h

(
∂u

∂x
+

∂v

∂y

)
= 0
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We are now in a position to write down the full set of

Shallow Water Equations:

du

dt
− fv +

∂Φ

∂x
= 0 (1)

dv

dt
+ fu +

∂Φ

∂y
= 0 (2)

dΦ

dt
+ Φ

(
∂u

∂x
+

∂v

∂y

)
= 0 (3)

13



We are now in a position to write down the full set of

Shallow Water Equations:

du

dt
− fv +

∂Φ

∂x
= 0 (1)

dv

dt
+ fu +

∂Φ

∂y
= 0 (2)

dΦ

dt
+ Φ

(
∂u

∂x
+

∂v

∂y

)
= 0 (3)

This is a set of three equations for (u, v, Φ). The independent
variables are (x, y, t). The vertical velocity does not appear.
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We are now in a position to write down the full set of

Shallow Water Equations:

du

dt
− fv +

∂Φ

∂x
= 0 (1)

dv

dt
+ fu +

∂Φ

∂y
= 0 (2)

dΦ

dt
+ Φ

(
∂u

∂x
+

∂v

∂y

)
= 0 (3)

This is a set of three equations for (u, v, Φ). The independent
variables are (x, y, t). The vertical velocity does not appear.

The total time derivative is now given by:

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

This is a nonlinear operator. The Shallow Water Equations
are, in general, impossible to solve analytically.
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Exercise: Vertical Velocity
Show that the vertical velocity is a linear function of depth.

? ? ?
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Exercise: Vertical Velocity
Show that the vertical velocity is a linear function of depth.

? ? ?

Solution:
We define the horizontal divergence:

∇H ·V =

(
∂u

∂x
+

∂v

∂y

)
.

we note that ∇H ·V is independent of z.

The continuity equation may be written

∇H ·V +
∂w

∂z
= 0

We integrate this between 0 and z, noting that the first term is inde-
pendent of z:

(∇H ·V)z + w(z)− w(0) = 0 .

But we assume a flat bottom, so w(0) = 0. Therefore,

w(z) = (∇H ·V)z

which increases linearly with z.
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Scale Analysis.
We now introduce characteristic scales for the independent
and dependent variables, and non-dimensionalize the equa-
tions. This enables us to examine the relative sizes of the
terms.
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Scale Analysis.
We now introduce characteristic scales for the independent
and dependent variables, and non-dimensionalize the equa-
tions. This enables us to examine the relative sizes of the
terms.

Let L and V be typical length and velocity scales. For ex-
ample, we replace u by Vu∗, so that u∗ is of order unity.
Thus,

∂u

∂x
=

(
V

L

)
∂u∗

∂x∗
, with

∂u∗

∂x∗
= O(1) ,

and similarly for the other terms.
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Scale Analysis.
We now introduce characteristic scales for the independent
and dependent variables, and non-dimensionalize the equa-
tions. This enables us to examine the relative sizes of the
terms.

Let L and V be typical length and velocity scales. For ex-
ample, we replace u by Vu∗, so that u∗ is of order unity.
Thus,

∂u

∂x
=

(
V

L

)
∂u∗

∂x∗
, with

∂u∗

∂x∗
= O(1) ,

and similarly for the other terms.

We assume an advective time scale T:

∂

∂t
∼ V · ∇ ;

1

T
=

V

L
; T =

L

V
.

Also, f = 2Ω sin φ ∼ 2Ω, provided we are not too close to the
equator.
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Typical values for the atmopshere are L = 1000km for the
horizontal scale of synoptic weather systems, and V = 10ms−1

for the wind speed.
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Typical values for the atmopshere are L = 1000km for the
horizontal scale of synoptic weather systems, and V = 10ms−1

for the wind speed.

The mean depth, H, over an area A is:

H =
1

A

∫∫
A

h(x, y) dxdy.

This is assumed to be equal to the scale-height of the atmo-
sphere. Thus, we choose H = 10km, about the depth of the
troposphere.
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∫∫
A

h(x, y) dxdy.

This is assumed to be equal to the scale-height of the atmo-
sphere. Thus, we choose H = 10km, about the depth of the
troposphere.

Just as it is not the absolute pressure which determines the
dynamics, but pressure gradients, similarly the dynamically
important quantity is the deviation of depth from the mean:
h′ = h− H.
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Typical values for the atmopshere are L = 1000km for the
horizontal scale of synoptic weather systems, and V = 10ms−1

for the wind speed.

The mean depth, H, over an area A is:

H =
1

A

∫∫
A

h(x, y) dxdy.

This is assumed to be equal to the scale-height of the atmo-
sphere. Thus, we choose H = 10km, about the depth of the
troposphere.

Just as it is not the absolute pressure which determines the
dynamics, but pressure gradients, similarly the dynamically
important quantity is the deviation of depth from the mean:
h′ = h− H.

We denote this vertical scale by D. Thus

h = H + h′ = H + Dh′∗ with h′∗ = O(1) .

But what value should we choose for D?
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What value should we choose for D?

The typical value of surface pressure is p0 = 105 Pa.

However, it is the deviation from p0 that is important. The
characteristic variation of surface pressure is about 10hPa.

We set the scale of pressure variation as P = 103 Pa.
This gives a scale for D:

1

ρ
∇p = g∇h =⇒ P

ρL
=

gD

L

Thus, the scale for depth variation is

D =
P

ρg
=

103

1 · 10
= 102 m .

When we examine the sizes of the terms in the momentum
equation, this will be seen to be appropriate.
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We now define the scale values:

L = 106 m ; V = 10 m s−1 ; T = (L/V) = 105 s ≈ 1 day

H = 104 m ; D = 102 m ; f ≈ 10−4 s−1 ; g = 10 m s−2 .
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We now define the scale values:

L = 106 m ; V = 10 m s−1 ; T = (L/V) = 105 s ≈ 1 day

H = 104 m ; D = 102 m ; f ≈ 10−4 s−1 ; g = 10 m s−2 .

The momentum equations may be written in vector form:

dV

dt
+ fk×V +∇Φ = 0 .
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We now define the scale values:

L = 106 m ; V = 10 m s−1 ; T = (L/V) = 105 s ≈ 1 day

H = 104 m ; D = 102 m ; f ≈ 10−4 s−1 ; g = 10 m s−2 .

The momentum equations may be written in vector form:

dV

dt
+ fk×V +∇Φ = 0 .

The magnitudes of the three terms are as follows:

dV

dt
∼ V2

L
; fk×V ∼ 2ΩV ; ∇Φ ∼ gD

L
.

10−4 10−3 10−3 .

The size of each term (in units ms−2) is indicated.
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We now define the scale values:

L = 106 m ; V = 10 m s−1 ; T = (L/V) = 105 s ≈ 1 day

H = 104 m ; D = 102 m ; f ≈ 10−4 s−1 ; g = 10 m s−2 .

The momentum equations may be written in vector form:

dV

dt
+ fk×V +∇Φ = 0 .

The magnitudes of the three terms are as follows:

dV

dt
∼ V2

L
; fk×V ∼ 2ΩV ; ∇Φ ∼ gD

L
.

10−4 10−3 10−3 .

The size of each term (in units ms−2) is indicated.

We note that the acceleration is an order of magnitude
smaller than the remaining terms. The Coriolis term and
the pressure gradient term are of the same order of mag-
nitude. This is called Geostrophic Balance.
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The Rossby Number.
The ratio of the acceleration to the Coriolis term is

Acceleration

Coriolis term
=

∣∣∣∣ dV/dt

fk×V

∣∣∣∣ ∼ V2/L

2ΩV
=

V

2ΩL
.

This ratio is called the Rossby Number, denoted Ro:

Ro ≡ V

2ΩL
.

It is a fundamental number in geophysical fluid dynamics.
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The Rossby Number.
The ratio of the acceleration to the Coriolis term is

Acceleration

Coriolis term
=

∣∣∣∣ dV/dt

fk×V

∣∣∣∣ ∼ V2/L

2ΩV
=

V

2ΩL
.

This ratio is called the Rossby Number, denoted Ro:

Ro ≡ V

2ΩL
.

It is a fundamental number in geophysical fluid dynamics.

Substituting the chosen values for V, f and L, we get

Ro =
10

10−4 · 106
= 10−1 � 1 .

The smallness of this non-dimensional parameter allows us
to make various approximations and perturbation analyses.
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Aside: The Froude Number
There is another non-dimensional number which depends on
the depth scale D but not on the Coriolis parameter. The
Froude Number is the ratio of the fluid flow to the speed of
gravity waves:[

Froude

Number

]
=

Flow Velocity

Gravity Wave Speed
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Aside: The Froude Number
There is another non-dimensional number which depends on
the depth scale D but not on the Coriolis parameter. The
Froude Number is the ratio of the fluid flow to the speed of
gravity waves:[

Froude

Number

]
=

Flow Velocity

Gravity Wave Speed

We will show later that the characteristic speed of gravity
waves is

√
gH, so the Froude number is

Fr =
V√
gH

With the characteristic scale values already chosen, we have

Fr =
10 m s−1

√
10 m s−2 · 104 m

≈ 1

30
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Aside: The Froude Number
There is another non-dimensional number which depends on
the depth scale D but not on the Coriolis parameter. The
Froude Number is the ratio of the fluid flow to the speed of
gravity waves:[

Froude

Number

]
=

Flow Velocity

Gravity Wave Speed
We will show later that the characteristic speed of gravity
waves is

√
gH, so the Froude number is

Fr =
V√
gH

With the characteristic scale values already chosen, we have

Fr =
10 m s−1

√
10 m s−2 · 104 m

≈ 1

30
Thus, for large-scale geophysical flows, both the Rossby
number and the Froude number are small:

Ro � 1 Fr � 1 .
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The Geostrophic Wind
The momentum equation

dV

dt
+ fk×V +∇Φ = 0

is of the form A + B + C = 0. If assume that one term is
smaller than the other two, we get various special cases.
The most important of these is geostrophic balance.
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The Geostrophic Wind
The momentum equation

dV

dt
+ fk×V +∇Φ = 0

is of the form A + B + C = 0. If assume that one term is
smaller than the other two, we get various special cases.
The most important of these is geostrophic balance.

We saw that the acceleration term is relatively small. Omit-
ting it, we get a diagnostic relationship called geostrophic
balance:

fk×V +∇Φ = 0 ; V =
1

f
k×∇Φ .

In terms of the pressure field, the geostrophic wind is

fk×V +
1

ρ
∇p = 0 ; V =

1

ρf
k×∇p .

So, the wind field is determined by the pressure field.

21



In terms of coordinates, the geostrophic wind is

u = − 1

fρ

∂p

∂y
, v = +

1

fρ

∂p

∂x
.

For geostrophic balance, the flow is perpendicular to the
gradient of presure. The existence of a fluid flow along
the isobars, rather than towards areas of low pressure, is
characteristic of geophysical flows, and in dramatic contrast
to the situation for fluid flow in a non-rotating framework.
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ECMWF Forecast Chart
72 hour forecast of sea level pressure and 850 hPa wind
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Web Exercise

Download and study a selection of weather charts. Find
charts with both pressure and winds. Study the relationship
between the wind and pressure fields.

Use stuff from Met Eireann web-site
http://www.met.ie

Use stuff from ECMWF web-site
http://www.ecmwf.int

Search for other sites
(There are hundreds)
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