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Lecture 7

Potential Vorticity Conservation
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Applications of PV Conservation

We consider a few simple applications
of Potential Vorticity conservation.
The treatment is purely qualitative.

A quantitative treatment will be undertaken in subsequent lectures.

�Gravity-Inertia Waves.

�Free Rossby Waves.

�Forced Rossby Waves.
Lee-side Trough.
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The Potential Vorticity Equation
Recall that the continuity equation may be written:

dh

dt
+ hδ = 0

The vorticity equation may be written:
d

dt
(ζ + f ) + (ζ + f )δ = 0 .

Taking logarithms, we may write these in the form
d

dt
log(ζ + f ) = −δ , d

dt
log h = −δ .

We eliminate δ between these equations to get:
d

dt
log(ζ + f )− d

dt
log h = 0 .

This may also be put in the following form:

d

dt

(
ζ + f

h

)
= 0 .

This is the equation of conservation of potential vorticity.
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Elementary Applications

of PV Conservation
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Gravity Waves: A First Look
Suppose initially the flow is irrotational and is converging
towards a point. Assume that f is constant. Consider a
column of fluid.

• Convergence induces stretching

• Stretching implies increased pres-
sure at the centre

• Increasing h also implies increas-
ing ζ

• ζ > 0 implies Cyclonic flow

• Cyclonic flow around high pres-
sure is unbalanced

• PGF and Coriolis force act out-
wards

• ∴ Divergent flow is induced.

The restoring forces give rise to Inertia-gravity waves.
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Rossby Waves: A First Look
Suppose initially the flow is nondivergent, so there is no

vertical velocity and h is constant for a fluid parcel. Then

absolute vorticity is conserved.

d(ζ + f )

dt
= 0 .

Suppose a parcel, initially at latitude y− y0 with f = f0 and
ζ = 0. Suppose that it moves North-eastward.

• Increasing f means decreasing ζ

• Negative ζ corresponds to anticyclonic flow

• Flow curves back towards y = y0

• Then f = f0 and ζ = 0 again

• Parcel continues SE and opposite half-cycle occurs.

Throughout the motion, ζ + f keeps the same value.
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Constant Absolute Vorticity (CAV) Trajectories.

Fluid parcels follow trajectories on which ζ+f remains con-
stant.
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Näıve argument concerning movement of Rossby waves

This qualitative argument indicates westward propagation.
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Formation of a Lee-side Trough

A mountain chain may produce a train of forced Rossby waves.
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More Conservation Properties
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The Circulation Theorem
The momentum equation in vector form is:

∂V

∂t
+ V.∇V + fk×V +∇Φ = 0 (7)

We easily prove the following vector identity:

V · ∇V = ∇(1
2V ·V) + ζk×V

Using this, the momentum equation may be written:

∂V

∂t
+∇(1

2V ·V) + (f + ζ)k×V +∇Φ = 0 (8)

Assume fluid system is contained in region D with boundary
C, with no flow across C. We integrate equation (8) around
the contour C.

The cross-product term vanishes, because k×V is perpen-
dicular to V and thus to s.

The gradient terms integrate to zero, because the contour
is closed.
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Contour defined by the flow velocity V
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Thus, the integral of (8) gives∮
C

∂V

∂t
· ds =

d

dt

∮
C

V · ds = 0

The integral of V around C is called the circulation. This re-
sult shows that the circulation around the boundary of the
domain remains constant.

Alternative view: the vorticity equation can be written

∂ζ

∂t
+∇·(ζ + f )V = 0

Integrating this over D:

d

dt

∫ ∫
D
ζ da = −

∫ ∫
D
∇·(ζ + f )V da =

∮
C

(ζ + f )V · n ds = 0

Thus, the integral of vorticity over the domain is a constant.
Put another way, the average vorticity is conserved.
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Conservation of Mass.
We write the continuity equation in flux form:

∂h

∂t
+∇·hV = 0 (9)

We multiply by ρ and integrate over the domain∫ ∫
D

(
∂ρh

∂t
+∇·ρhV

)
da = 0

By the divergence theorem, the second term vanishes:∫ ∫
D
∇·ρhV da =

∮
C
ρhV · n ds = 0

Thus we get ∫ ∫
D

∂ρh

∂t
da =

d

dt

∫ ∫
D
ρh da = 0

But the mass of fluid over an element of area da is dM =
ρh da. Thus, the equation expresses conservation of total
mass.
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Conservation of Energy
The potential energy of a column of fluid is:

P =

∫ h

0
ρgz dz = 1

2ρgh
2 =

(
ρ

2g

)
Φ2 .

The kinetic energy of the column is

K =

∫ h

0

1
2ρV ·V dz = 1

2ρhV ·V =

(
ρ

2g

)
ΦV ·V .

Multiply the continuity equation (9) by Φ to get(
g

ρ

)
∂P

∂t
=
∂

∂t
(1
2Φ

2) = −Φ∇ ·ΦV .

Next, multiply the momentum equation

∂V

∂t
+ (ζ + f )k×V +∇(Φ + 1

2V ·V) = 0

by ΦV to obtain (use V · k×V = 0)

ΦV·∂V
∂t

+ ΦV · ∇Φ + ΦV · ∇(1
2V ·V) = 0
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Add the continuity equation multiplied by 1
2V ·V:

1
2V ·V∂Φ

∂t
+ 1

2V ·V∇·ΦV = 0

to obtain the expression(
g

ρ

)
∂K

∂t
+∇ · [(12V ·V)ΦV] +∇·Φ2V − Φ∇·ΦV = 0 .

Finally, integrate the equations for P and K over the do-
main:

d

dt

∫ ∫
D

(
ρ

2g

)
Φ2 da = −

∫ ∫
D

(
ρ

g

)
Φ∇·ΦV da

d

dt

∫ ∫
D

(
ρ

2g

)
ΦV ·V da = +

∫ ∫
D

(
ρ

g

)
Φ∇·ΦV da .

Adding these gives the energy conservation equation:

d

dt

∫ ∫
D

(
ρ

2g

) [
ΦV ·V + Φ2] da =

d

dt
[K + P ] = 0 . (10)

This is the energy principle: the sum of the kinetic plus
potential energy of the fluid system remains constant.
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Simplification of the PV Equation
Conservation of potential vorticity implies that the quan-
tity P = (ζ + f )/Φ, which we call the potential vorticity, is
conserved following the motion.
That is, the value of P for a particular parcel of fluid remains
constant as that parcel is carried along with the flow.
The conservation of potential vorticity is of great signifi-
cance.

If the flow is geostrophic, PV conservation provides a single
equation for the dynamics.
Let us assume geostrophic flow:

fk×V +∇Φ = 0 .

The vorticity may then be written in terms of Φ:

ζ = k · ∇ ×V = ∇ ·V × k = ∇·(1/f)∇Φ
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The material time derivative takes the form
d

dt
=
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
=
∂

∂t
− 1

f

∂Φ

∂y

∂

∂x
+

1

f

∂Φ

∂x

∂

∂y

Then the potential vorticity equation (6) becomes an equa-

tion for a single dependent variable, Φ:(
∂

∂t
− 1

f

∂Φ

∂y

∂

∂x
+

1

f

∂Φ

∂x

∂

∂y

) [
∇·(1/f)∇Φ + f

Φ

]
= 0 .

? ? ?

Although the above equation can be solved numerically, it is
not convenient for analysis. We will derive a more amenable
form now.
Assume the flow is quasi-geostrophic and quasi-nondiverg-
ent:

V ≈ 1

f
k×∇Φ , V ≈ k×∇ψ .
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To the first order of approximation, we can move the factor
1/f inside the differential operator:

1

f
k×∇Φ ≈ k×∇

(
Φ

f

)
.

Thus, the geopotential and stream function are related:

Φ ≈ fψ .

Now assume the deviation of geopotential from its mean
value is small:

Φ = Φ̄ + Φ′ with Φ′� Φ̄ .

We can equate Φ′ with fψ. Then we have

1

Φ
=

1

Φ̄(1 + Φ′/Φ̄)
≈ 1

Φ̄

(
1− Φ̄

Φ̄

)
≈ 1

Φ̄

(
1− fψ

Φ̄

)
Thus, the potential vorticity becomes

P ≡ ζ + f

Φ
≈ 1

Φ̄
(ζ + f )

(
1− fψ

Φ̄

)
≈ f

Φ̄
+
ζ

Φ̄
− f2ψ

Φ̄2
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We can ignore the variation of f in the term containing ψ,
so

Φ̄P ≈ ζ + f − Fψ

where F ≡ f2
0/Φ̄ is a constant.

Next, we use the nondivergent wind in the Lagrangian deriva-
tive:

dα

dt
=
∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y

=
∂α

∂t
+

{
∂ψ

∂x

∂α

∂y
− ∂ψ

∂y

∂α

∂x

}
=
∂α

∂t
+ J(ψ, α) .

Using this together with the approximation for P derived

above, the PV-equation may be written as

∂

∂t

(
∇2ψ − Fψ

)
+ J(ψ,∇2ψ) + β

∂ψ

∂x
= 0 .
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The Barotropic QGPV Equation
The barotropic, quasi-geostrophic potential vorticity equa-

tion (the QGPV Equation) is

∂

∂t

(
∇2ψ − Fψ

)
+ J(ψ,∇2ψ) + β

∂ψ

∂x
= 0 .

This is a single equation for a single variable, the stream
function ψ.

The simplifying assumptions have the effect of eliminating
high-frequency gravity wave solutions, so that only the slow
Rossby wave solutions remain.

We will study the wave-like solutions of this equation in
the next lecture.

We will also study numerical solutions of this equation using
a program written in matlab and in C.
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