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Applications of PV Conservation

The Potential Vorticity Equation

Recall that the continuity equation may be written:

We consider a few simple applications @+ nE
of Potential Vorticity conservation. dt B
The treatment is purely qualitative. The vorticity equation may be written:
A quantitative treatment will be undertaken in subsequent lectures. %(g‘ +f)+(C+ f)o=0.
. . Taking logarithms, we may write these in the form
B Gravity-Inertia Waves. d g
ol R by Wi £log(('+f)=—(5, %logh:—é.
ee 0ssby aves. We eliminate ) between these equations to get:
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Lee-side Trough.

This may also be put in the following form:

d(C+f)
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This is the equation of conservation of potential vorticity.




Suppose initially the flow is irrotational and is converging

towards a point. Assume that f is constant. Consider a

column of fluid.

El A | . e Convergence induces stretching
€eme nta ry p p |Cat|o ns « é i e Stretching implies increased pres-

sure at the centre

Of PV Conse rvatlon e Increasing h also implies increas-
ing (
e e ( > 0 implies Cyclonic flow

e Cyclonic flow around high pres-
sure is unbalanced

e PGF and Coriolis force act out-

wards
Mooy, Lol

e .. Diwvergent flow is induced.
The restoring forces give rise to Inertia-gravity waves.

Constant Absolute Vorticity (CAV) Trajectories.

Suppose initially the flow is nondivergent, so there is no 1

vertical velocity and h is constant for a fluid parcel. Then osf
absolute vorticity is conserved. GBr
d(c + f> B 0.4} CYCLONIC
- 4, — O . 0.2 o
dt &>0
Suppose a parcel, initially at latitude y —yy with f = f; and °
¢ = 0. Suppose that it moves North-eastward. 02

e Increasing f means decreasing ( B

e Negative ( corresponds to anticyclonic flow o

e Flow curves back towards y = y B

e Then f = f; and ( =0 again 0 1 2 3 4 5 5 :

e Parcel continues SE and opposite half-cycle occurs.

Fluid parcels follow trajectories on which ( + f remains con-

Throughout the motion, ¢ + f keeps the same value. o




Naive argument concerning movement of Rossby waves Format|on Of a Lee_s|de Trough
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Handwaving explanation of Rossby Wave Propagation.

Formation of lee-side trough.

This qualitative argument indicates westward propagation.

A mountain chain may produce a train of forced Rossby waves.

The Circulation Theorem

The momentum equation in vector form is:

aa—\tf+v.vv+fk><v+vq>:o (7)

We easily prove the following vector identity:

More Conservation Properties V.UV = V3V V)4 kX V
Using this, the momentum equation may be written:

oV

a+v<%\/‘.V)+(f+okxV+v<1>:o (8)
Assume fluid system is contained in region D with boundary
C, with no flow across C. We integrate equation (8) around

the contour C.

The cross-product term vanishes, because k x V is perpen-
dicular to V and thus to s.

The gradient terms integrate to zero, because the contour
is closed.




Thus, the integral of (8) gives

a—V-ds:ij{V-ds:O
t dt Jo

The integral of V around C' is called the circulation. This re-
sult shows that the circulation around the boundary of the
domain remains constant.

Alternative view: the vorticity equation can be written

oC B
St VAC+HNV =

Integrating this over D:
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Thus, the integral of vorticity over the domain is a constant.
Put another way, the average vorticity is conserved.

Contour defined by the flow velocity V

Conservation of Mass. Conservation of Energy

We write the continuity equation in flux form: The potential energy of a column of fluid is:
oh h
— + V-AV =0 9) P:/ pgzdz:%pghQZ P g2,
ot 0 29
We multiply by p and integrate over the domain The kinetic energy of the column is
Oph h
//(p +VphV) da =0 K:/%pV-de:%phV-V=<2ﬁ>®V-V.
0 g
By the divergence theorem, the second term vanishes: Multiply the continuity equation (9) by ¢ to get
V-phV da = hV -nds =0 = 5P%) = —PV - OV .
JfyTomva=fo PESS T
Thus we get Next, multiply the momentum equation
doh oV
/ La__//phda_o S CHkXVLV@+EV-V) =0
But the mass of fluid over an element of area da is dM = by @V to obtain (use V -k x V =0)
phda. Thus, the equation expresses conservation of total dV.- 8_V_|_q>v Vo + PV - V( V.V)=0
ot
mass.




Add the continuity equation multiplied by %V -V
0P
ot

to obtain the expression
oK
=S| —=+V-
( ) ot
Finally, integrate the equations for P and K over the do-
main:
i// (ﬁ)qﬂda: // ( )cbvwda
dt | Jp \2¢g
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Adding these gives the energy conservation equation:

%//D (%) BV -V + ¢7] da:%[fmp]:o. (10)

This s the energy principle: the sum of the kinetic plus
potential energy of the fluid system remains constant.

WV.V— +1Iv.VV.oVv =0

(AV - V)OV] + V-0V — V-0V = 0.

Simplification of the PV Equation

Conservation of potential vorticity implies that the quan-
tity P = (( + f)/®, which we call the potential vorticity, is
conserved following the motion.

That is, the value of P for a particular parcel of fluid remains
constant as that parcel is carried along with the flow.

The conservation of potential vorticity is of great signifi-
cance.

If the flow is geostrophic, PV conservation provides a single
equation for the dynamics.
Let us assume geostrophic flow:

fkxV+Ve=0.
The vorticity may then be written in terms of &:

(=k-VxV=V-Vxk=V(/f)VD

The material time derivative takes the form

d a+ a+ o 0 1aq>a+1aq>a
dat ot Yor gay ot foydxr  foxdy

Then the potential vorticity equation (6) becomes an equa-

tion for a single dependent variable, o:
0 1000 1000\ [V-(1/HVE+]) _
ot foyoxr fox0oy o -
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Although the above equation can be solved numerically, it is
not convenient for analysis. We will derive a more amenable
form now.

Assume the flow is quasi-geostrophic and quasi-nondiverg-
ent:

Vo~ ik x VO,

Vakx V.
/

To the first order of approximation, we can move the factor
1/f inside the differential operator:

%ka@zka<§>.

Thus, the geopotential and stream function are related:

b=~ fi.
Now assume the deviation of geopotential from its mean
value is small:

o=+ with P < d.

We can equate & with fi). Then we have
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Thus, the potential vorticity becomes
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We can ignore the variation of f in the term containing 1,
SO
PP~(+f—-Fy

where F' = f2/® is a constant.
Next, we use the nondivergent wind in the Lagrangian deriva-
tive:
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Using this together with the approximation for P derived

above, the PV-equation may be written as

0

2 (V% — Fu) + 0, V%) + b =

The Barotropic QGPV Equation

The barotropic, quasi-geostrophic potential vorticity equa-
tion (the QGPV Equation) is

0

o (V2 = FY) + J(6, V) + e =

This is a single equation for a single variable, the stream
function .

The simplifying assumptions have the effect of eliminating
high-frequency gravity wave solutions, so that only the slow
Rossby wave solutions remain.

We will study the wave-like solutions of this equation in
the next lecture.

We will also study numerical solutions of this equation using
a program written in MATLAB and in C.




