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Vorticity and Divergence
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Introduction
In this Lecture we will continue our investigation of the
properties of the Shallow Water Equations (SWE).

We introduce vorticity and divergence and derive equations
for them.

We show that an arbitrary velocity field may be partitioned
into curl-free and divergence-free components.

Also, we show that the velocity may be reconstructed from
knowledge of vorticity and divergence.

The most important result we derive is the Conservation
of Potential Vorticity.
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Recall the form of the SWE:(
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The geopotential is Φ = gh and the Coriolis parameter is
f = 2Ω sinφ. Recall that we have neglected all effects of
spherical geometry except in the Coriolis term.

We define the beta parameter:

β =
df

dy
=

2Ω cosφ

a
.

For latitudes φ not too far from a central value φ0, we may
assume that

f = 2Ω sinφ ≈ 2Ω sinφ0 and β =
2Ω cosφ

a
≈ 2Ω cosφ0

a
are both constant, unless differentiated w.r.t. y.
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Tangent and normal unit vectors s and n.
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“Spin” and “Spread”
The extent to which the fluid is rotating may be measured
by calculating the circulation around a small circle C and
taking the limit as the area A goes to zero:

ζ = lim
A→0

1

A

∮
C

V · s ds .

We may call this the Spin or, more usually, the Vorticity.

The extent to which the fluid is spreading may be measured
by calculating the outward flux from a small circle C and
taking the limit as the area A goes to zero:

δ = lim
A→0

1

A

∮
C

V · n ds .

We may call this the Spread or, more usually, the Diver-
gence.

Using Stokes’ and Gauss’s Theorems, we will obtain differ-
ential forms of the vorticity and divergence.
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First, consider Stokes’ Theorem:∮
C

V · s ds =

∫ ∫
A

k · ∇ ×V da .

Assuming the area A of the circle is small, we get
1

A

∮
C

V · s ds ≈ k · ∇ ×V .

Taking the limit A −→ 0, we define the vorticity as

ζ = k · ∇ ×V

Now recall Gauss’s Theorem∮
C

V · n ds =

∫ ∫
A
∇ ·V da .

Assuming the area A of the circle is small, we get
1

A

∮
C

V · n ds ≈ ∇ ·V .

Taking the limit A −→ 0, we define the divergence as

δ = ∇ ·V
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We define the vorticity and divergence as follows:

ζ = k · ∇ ×V =

(
∂v

∂x
− ∂u

∂y

)
δ = ∇ ·V =

(
∂u

∂x
+
∂v

∂y

)
Note that ζ is the vertical component of the vorticity and
δ is the horizontal divergence. However, we use the words
divergence and vorticity to mean δ and ζ.

We will derive equations for the vorticity and divergence by
differentiating and combining the momentum equations.

Exercise:
Show that the ratio of the vertical to horizontal component
of the (3-D) vorticity is of the order w/V so that, with the
assumptions we have made, the vertical component domi-
nates.
If we relax the assumption ∂V/∂z = 0, how does this affect
the conclusion?
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Exercise: Geostrophic Divergence
Suppose the wind is geostrophic. Derive expressions for
vorticity and divergence in terms of geopotential.

? ? ?

The geostrophic velocity is given by

u = −1

f

∂Φ

∂y
v = +

1

f

∂Φ

∂x
,

Calculating vorticity directly, we get

ζ =
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− ∂u
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)
=

∂

∂x

(
+

1

f
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)
− ∂

∂y

(
−1

f
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)
=

1

f
∇2Φ +

β

f
u .

For constant f the stream function is ψ = Φ/f .

Calculating divergence directly, we get

δ =

(
∂u

∂x
+
∂v

∂y

)
=

∂

∂x

(
−1

f

∂Φ

∂y

)
+
∂

∂y

(
+

1

f

∂Φ

∂x

)
= −β

f
v .

For f constant, it follows immediately that δ = 0. Therefore, the
geostrophic divergence depends on the variation of f , the beta-effect.
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Assume that the scale of motion is synoptic, L = 106 m.
Since a = 6371 km ≈ 107 m, we may assume

L

a
∼ Ro � 1 .

Let us assume that the flow is approximately geostrophic. Then

ζ ∼ V

L
δ ∼ V

a
∼ L

a
ζ .

Thus, for typical synoptic motions, the divergence is an order of mag-
nitude smaller than the vorticity

δ ∼ Ro ζ

The smallness of the divergence is due to approximate cancellation be-
tween influx and outflow. The terms ∂u/∂x and ∂v/∂y are roughly equal
in magnitude but opposite in sign. This makes accurate calculation of
divergence very difficult.
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The Helmholtz Theorem (2D-Form)
A fundamental theorem due to Stokes (1849) states that a
velocity field can be decomposed into the sum of an irrota-
tional (curl-free) and a non-divergent part.

V = VD + VR = ∇χ +∇×A ,

where χ and A are called the scalar and vector potentials.
It is possible to impose an additional constraint, ∇ · A = 0.

For two-dimensional flow, the decomposition is as follows:

V = Vχ + Vψ = ∇χ + k×∇ψ .
Here ψ and χ are the stream function and velocity potential.

We recall the vector identities (curl grad χ = 0 and div curl A =
0):

∇×∇χ = 0 ∇ · (∇×A) = 0 .

In 2-D, the latter implies ∇ · k×∇ψ = 0.
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Thus,

δ = ∇ ·V = ∇2χ ζ = k · ∇ ×V = ∇2ψ .

Note the useful vector identity: k · ∇ ×V = ∇ · (V × k).

Given the vorticity and divergence, we can recover the ve-
locity field provided appropriate boundary conditions are
specified.

Procedure:
(1) Solve the two Poisson equations

∇2χ = δ , ∇2ψ = ζ ,

for the stream function and velocity potential.

(2) Calculate the wind from

V = ∇χ + k×∇ψ .
or, in component form

u =
∂χ

∂x
− ∂ψ

∂y
, v =

∂χ

∂y
+
∂ψ

∂x
.
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The Vorticity Equation
Recall the momentum equations(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
− fv +

∂Φ

∂x
= 0 (1)(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ fu +

∂Φ

∂y
= 0 (2)

Taking the x-derivative of (2) and subtracting from it the
y-derivative of (1), we get an equation for ζ:

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ (ζ + f )δ + βv = 0 .

Note that, since f is independent of time,
df

dt
= v

∂f

∂y
= βv .

Thus the vorticity equation may also be written:

d

dt
(ζ + f ) + (ζ + f )δ = 0 .
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The absolute vorticity η is defined as the sum of relative
vorticity and planetary vorticity:

η︸︷︷︸
Absolute
Vorticity

= ζ︸︷︷︸
Relative
Vorticity

+ f︸︷︷︸
Planetary
Vorticity

.

The vorticity equation may now be written

1

η

dη

dt
+ δ = 0 .

The relative rate-of-change of absolute vorticity is equal
to (minus) the divergence.

We note the formal similarity to the continuity equation:

1

h

dh

dt
+ δ = 0 .

The relative rate-of-change of depth is equal to (minus)
the divergence.

We may illustrate this by considering a column of fluid.
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The Continuity Equation may be interpreted pictorially.

Convergence is associated with stretching of the column.
Divergence is associated with shrinking of the column.
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The Vorticity Equation may be interpreted pictorially.

Convergence is associated with spin-up of the fluid column.
Divergence is associated with spin-down of the column.
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The Divergence Equation
Recall again the momentum equations(

∂u

∂t
+ u
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= 0 (1)(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ fu +

∂Φ
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Taking the x-derivative of (1) and adding it to the y-derivative

of (2), we get an equation for δ:

∂δ

∂t
+ u

∂δ

∂x
+ v

∂δ

∂y
− ζf + δ2− 2J(u, v) + βu+∇2Φ = 0 .

The Jacobian term is defined as

J(u, v) =
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∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y

)
.
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Note: The derivation of the divergence equation in the
above form is elementary, but it requires a page or two of
algebraic manipulation.

Since we will not make explicit use of the full divergence
equation, we need not consider it further.

Observation: for large-scale atmospheric flow in middle lat-
itudes, the divergence is much smaller than the vorticity:

|δ| � |ζ| .
This allows us to make approximations to the equations.

? ? ?

New Definitions:
The flow is cyclonic if fζ > 0.
The flow is anticyclonic if fζ < 0.
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The Potential Vorticity Equation
The continuity equation may be written:

dh

dt
+ hδ = 0

The vorticity equation may be written:

d

dt
(ζ + f ) + (ζ + f )δ = 0 .

Wo eliminate δ between the vorticity and continuity equa-
tions to get:

1

ζ + f

d(ζ + f )

dt
=

1

h

dh

dt
.

This may also be put in the following form (take logs):

d

dt

(
ζ + f

h

)
= 0 .

This is the equation of conservation of potential vorticity.
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Exercise: Bottom Orography
We have assumed the bottom surface is flat. Now we will

relax this.

Assume the height of the bottom boundary is hB(x, y).

Show that the Conservation of Potential Vorticity takes the

form:
d

dt

(
ζ + f

h− hB

)
= 0 .

This states that the following ratio is conserved:
d

dt

(
Absolute Vorticity

Fluid Depth

)
= 0 .

? ? ?

This is an important exercise. The solution will not be given.
The proof is straightforward, requiring only a minor adjust-
ment of the derivation in the case hB(x, y) ≡ 0.
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