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Lecture 3

The Equations of Motion
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The Thin Atmosphere
The atmosphere is infinitely thick but very thin!
90% of its mass lies within 10km of the earth’s surface.

The lowest layer of the atmosphere, where temperature de-
creases with height, is called the troposphere. It about
10km in depth.

The vertical extent of the large scale motion systems is very

much smaller than their horizontal scales. Characteristic

horizontal and vertical scales for synoptic systems are

L = 106 m = 1000 km H = 104 m = 10 km .
This geometrical situation is intimately linked to the exis-

tence of hydrostatic balance.

A typical grid-box of a numerical model might have dimen-
sions 10 km × 10 km × 100 m, which has an aspect ratio of one
hundred to one, comparable to that of a credit card!
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Digression

Did you know?

The ratio of the length to the breadth of a credit card is
equal to the ratio of the Golden Section:(

Aspect

Ratio

)
=

[
Length

Breadth

]
=

1 +
√

5

2
≈ 1.618 .

It is allegedly the most aesthetically pleasing rectangular
shape, and is found in numerous classical works of art.

This ratio is ubiquitous throughout nature. It is closely
associated with the Fibonacci sequence of numbers

{1, 1, 2, 3, 5, 8, 13, 21, 34, . . . } ,

where each term is the sum of the preceding two terms.
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Hydrostatic Balance
For a fluid at rest, the pressure at a point depends on the
weight of fluid vertically above that point.

The pressure difference between two points on the same
vertical line depends only on the weight of fluid between
them.
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p(z)
?

g

Force Upward on Box : + [p(z) ·∆x∆y]

Force Downward on Box : − [p(z + ∆z) ·∆x∆y + mg]
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For equilibrium, the net force must be zero:

p(z + ∆z)− p(z)

∆z
·∆x∆y∆z + mg = 0 .

This may be written

∂p

∂z
· V + mg = 0 ,

or, dividing through by the volume,

∂p

∂z
+ ρg = 0 .

This is the Hydrostatic balance equation. It implies an
exact balance between the vertical pressure gradient and
gravity.

For an atmosphere at rest, hydrostatic balance holds
exactly.
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Exercise: Vertical Pressure Gradient
Suppose the atmosphere is in a state of hydrostatic balance.
Calculate approximately the pressure drop over a vertical distance of
100m, assuming the density is constant at ρ = 1.2kgm−3 and g = 9.8ms−2.

? ? ?

The hydrostatic equation gives

∆p

∆z
+ ρg = 0 .

Substituting the numerical values gives

∆p = −∆zρg = −100 m× 1.2 kg m−3 × 9.8 m s−2

(negative, since pressure decreases upwards). Evaluating this gives

|∆p| = 1176 kg m−1s−2 = 1176 Pa = 11.76 hPa .

The hectoPascal, numerically equal to the millibar, is the pressure unit
most commonly used in practice.

Note that the assumption of constant density is unrealistic over large
vertical distances. We will relax this assumption presently.
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Hydrostatic Approximation
The hydrostatic approximation consists of assuming that
balance between the vertical pressure gradient and gravity
holds even when the fluid is in motion. For the large scale
motions of the atmosphere and ocean, hydrostatic balance
holds to a high degree of accuracy.

Until recently, most numerical models used to predict atmo-
spheric flow were hydrostatic. For these models, the verti-
cal velocity is a diagnostic variable, deduced from the other
dependent variables at each point in time.

Non-hydrostatic models are now growing in popularity, par-
ticularly where spatial grids of a few kilometres are used.
For these models, the vertical velocity is a prognostic vari-
able, predicted in the same way as the other dependent
variables.
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The Equation of State
We are familiar from elementary physics with Boyle’s Law
and Charles’ Law of gases. They are special cases of the
Equation of State for a perfect gas:

pV = nR∗T

where R∗ = 8314JK−1 kmol−1 is the universal gas constant
and n is the number of kilomoles of gas (a kmole is the
molecular weight in kg).

The mean molecular weight of air is µ ≈ 29. Thus, m = µn.

Dividing by the volume, we get the equation of state

p = RρT

where R = R∗/µ = 287JK−1 kmol−1 is the gas constant for
dry air.
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Table 1: Main Constitutents of the Atmosphere

Gas Percentage Mol. Wt.
Nitrogen N2 80% 28
Oxygen O2 20% 32
Air 100% 29

The atmosphere is composed primarily of nitrogen (80%)
and oxygen (20%), so the mean molecular weight of air is
about 29.

Other constituents, such as carbon dioxide and methane,
are vitally important for radiative balance, but their con-
centrations are quite small.

Water occurs in all three phases, and is enormously impor-
tant. However, we will be concentrating on the large-scale
dynamics of the atmosphere and will largely ignore water,
as it introduces great complexity.
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Vertical Variation of Pressure
Let’s consider an isothermal atmosphere at rest. Let the
constant temperature be T0. The hydrostatic equation and
the equation of state are

∂p

∂z
+ gρ = 0 , p = RρT0 .

Combining these we have

∂p

∂z
= −g

p

RT0
, so

dp

p
= −g dz

RT0
= −dz

H
,

where we define the scale-height by H = RT0/g.

We integrate over the range p0 = p(0) to p = p(z) to get

log

(
p

p0

)
= − z

H

or

p(z) = p0 exp(−z/H) .
Thus, pressure decreases exponentially with height.
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Since ρ = p/RT0, density also decreases exponentially with
height.

The scale height is easily computed. Suppose T0 = 265K.
Then

H =
RT0

g
=

287× 265

9.8066
= 7755 m = 7.755 km ,

so the scale height is about 8km. Pressure decreases by a
factor of 1/e over this height.

? ? ?

Exercise

Relax the assumption of an isothermal atmosphere: As-
sume that temperature decreases linearly with height

T = T0 + γz

where the lapse rate, γ = ∂T/∂z < 0, is constant.

Calculate the dependence of p on height.
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Exercise: Constant Lapse-rate
Answer: Assume that temperature decreases linearly with height

T = T0 + γz

where the lapse rate γ = ∂T/∂z < 0 is constant.

Combining the hydrostatic equation and the equation of state as before,
we get

dp

p
= −g dz

RT
= − g

RT0

dz

1 + γz/T0
.

Integrating this yields

log

(
p

p0

)
= − T0

γH
log

(
1 +

γz

T0

)
= log

(
1 +

γz

T0

)−T0/γH

so that

p = p0

(
1 +

γz

T0

)−T0/γH

[More Work: Show that this reduces to the previous result when γ → 0.

Use limn→∞(1 + x/n)−n = exp(−x).]
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Exercise: Mass of Air Column
Consider a vertical column of air, of cross-section A and
infinite height. Suppose the pressure at the bottom of the
column is p0.
What is the mass M of the column?

? ? ?

If we knew the density, we could calculate the mass using

M =

∫∫∫
V

ρ dV = A

∫ ∞

0

ρ dz .

However, there is a simpler way: the force of the column on the surface
below it is given by two quantities, which must be equal:

p0 × A = M × g , so that M = p0A/g .

For a unit cross-section, A = 1m2, the total column mass is M = p0/g ≈
104 kg or ten tonnes!

More Work: Recall the TV screen. The force was 12kN for an area

A = 0.12m2. Show that this result is consistent with the above.
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Equivalent Incompressible Fluid
What is the depth of a layer of incompressible fluid having the same
bottom pressure as the atmosphere?

The mass of a vertical column of fluid of constant density ρ0 and depth
h is

M = A

∫ h

0

ρ0 dz = Aρ0h .

The force exerted by the column on the surface below is Mg. Since
pressure is force-per-unit-area, the pressure is

p0 = gρ0h

so, for given pressure p0, the depth is

h =
p0

gρ0
.

But the scale height of the atmosphere is

H =
RT0

g
=

p0

gρ0
,

so we see that the depth h equals the scale height H.
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The Equations of Motion
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Forces Acting on a Parcel of Air
(1) Recall that the pressure force per unit mass is

Fp = −1

ρ
∇p .

It points towards low pressure.

(2) The force due to gravity acts vertically downward, to-

wards the centre of the earth. Per unit mass, it is:

g∗ = −gk .
The star on g∗ will be explained below.

(3) The force of friction acts in a direction opposite to the

velocity of the flow. We could model it as

Ff = −ν∇2V, or Ff = −κV .
The friction coefficient κ will depend on position and, per-
haps, on velocity.
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Equations in an Inertial Frame
Independent Variables: Space and time , r and t
Dependent Variables: V = (u, v, w), p, ρ and T .

The basic equations of motion (a = F/m) are:
dV

dt
= −1

ρ
∇p + g? + Ff (1)

where the total, material or Lagrangian derivative is
d

dt
=

∂

∂t
+ V · ∇

which measures the change with time of a variable moving
along with the fluid flow.

The continuity equation, representing the conservation of
mass, may be written in Lagrangian form:

dρ

dt
+ ρ∇ ·V = 0 .

If the fluid is incompressible, it is especially simple:

∇ ·V = 0 (2)
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A Complete System
If we assume incompressible, inviscid flow, equations (1)
and (2) comprise a system of four equations for the four
variables (u, v, w; p):

dV

dt
= −1

ρ
∇p + g?

∇ ·V = 0

Written out in (local) cartesian coordinates, they are(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
u = −1

ρ

∂p

∂x(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
v = −1

ρ

∂p

∂y(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
w = −1

ρ

∂p

∂z
− g

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 .
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Rotating Coordinate Frames
Theorem: Consider a vector A fixed in a frame which is

rotating with constant angular velocity Ω. Then the rate of

change of A is
dA

dt
= Ω×A .

(see, e.g., Synge and Griffith, pg. 278.)

? ? ?

The vector rotates through an angle Ω∆t in time ∆t.

The projection of A on the Ω-axis does not change

The projection of A in the X-Y-plane is A sin θ. It does not change in
magnitude, but its direction changes (see Figure). We have

∆A = (ΩA sin θn̂) ·∆t

where n̂ is a unit vector perpendicular to both Ω and A.
Thus

dA

dt
= Ω×A .
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Consider a vector

A = A1i + A2j + A3k .

The rate of change of A in the rotating frame is(
dA

dt

)
R

=
dA1

dt
i +

dA2

dt
j +

dA3

dt
k .

The rate of change of A in the inertial frame is(
dA

dt

)
I
=

(
dA1

dt
i +

dA2

dt
j +

dA3

dt
k

)
+

(
A1

di

dt
+ A2

dj

dt
+ A3

dk

dt

)
.

The changes in the unit vectors are (by the above theorem)

di

dt
= Ω× i ;

dj

dt
= Ω× j ;

dk

dt
= Ω× k .

Therefore,(
dA

dt

)
I
=

(
dA1

dt
i +

dA2

dt
j +

dA3

dt
k

)
+ Ω× (A1i + A2j + A3k) .
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Thus, the relationship between the relative and absolute

rates of change of A is:(
dA

dt

)
I

=

(
dA

dt

)
R

+ Ω×A . (∗)

? ? ?

Now let A be the position vector r. Since (dr/dt)I = VI and
(dr/dt)R = VR, we get:

VI = VR + Ω× r ,

which relates the relative velocity to that in the inertial

frame:[
Inertial

Velocity

]
=

[
Relative

Velocity

]
+

[
Velocity

of Frame

]
? ? ?
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Exercise
If A = r0 is a point fixed in the rotating frame, the velocity
in the absolute frame is

V = Ω× r0 .

Find the absolute velocity of a point on the earth’s surface
(i) at the Equator, and (ii) at 60◦ North.

? ? ?

The rotation of the earth (assuming solar day ≈ siderial day) is:

Ω = 1 rev. per day =
2π

24× 60× 60
rad/sec = 7.29× 10−5 s−1

The radius of the earth is

a =
2× 107

π
m ≈ 6.37× 106 m .

(i) At the equator, φ = 0◦ and θ = 90◦, so that sin θ = 1 and

Ω× r0 = Ωa = (7.29× 10−5 s−1)× (6.37× 106 m) = 4.64× 102 m s−1 ∼ 1000 m.p.h.

(ii) At φ = 60◦, we have θ = 30◦, so that sin θ = 0.5, and the value of the

velocity due to the earth’s rotation is half that at the equator.
24



Relative Acceleration
Recall from (*) above that(

dA

dt

)
I
=

(
dA

dt

)
R

+ Ω×A .

Now let A be the absolute velocity VI = VR + Ω× r:(
dVI

dt

)
I

=

(
dVR

dt

)
R

+

(
dΩ× r

dt

)
R

+ Ω×VR + Ω× (Ω× r)

=

(
dVR

dt

)
R

+ 2Ω×VR + Ω× (Ω× r) .

The term Ω× (Ω× r) is called the centrifugal acceleration.
Since it depends only on position, it can be combined with
the gravitational acceleration to give an apparent gravita-
tional attraction

g = g? −Ω× (Ω× r) .

This is a small adjustment to the true gravitational acceler-
ation.
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Exercise: Centrifugal Acceleration
Calculate the magnitude of the centrifugal acceleration at
the Equator and compare it to the magnitude of the gravi-
tational acceleration.

? ? ?

First note that
Ω× (Ω× r) = −Ω2R ,

where R is the projection of r on the equatorial plane. Thus, near the
earth’s surface, the magnitude of the centrifugal acceleration is

Ω2a = (7.29× 10−5 s−1)2 × (6.37× 106 m) = 3.18× 10−2 m s−2

Now, comparing with true gravity, the percentage correction is

Ω2a

g
× 100 ≈ 0.3% .

The centrifugal acceleration is responsible for the flattened form of the
earth, which assumes an oblate spheroidal shape.

Do you lose weight when you travel to the Tropics? If so, how much?

26

The Coriolis Acceleration
The term 2Ω×V is called the Coriolis acceleration. It varies
linearly with the speed V and is perpendicular to the veloc-
ity V

The Coriolis acceleration is of primary impor-
tance for the dynamics of the atmosphere. It
is a dominant factor in all large-scale weather
systems.

Since 2Ω×V has no component in the direction of motion,
it does no work.

However, once the air is moving, it is subject to the deflect-
ing effect of this term. This is why the atmospheric flow is
predominantly rotational in character.

27

Exercises
(1) Calculate the deflection of a golf ball travelling for 10
seconds at 10 m/s. Assume a latitude of 60◦N, and make
reasonable assumptions to simplify the problem.

(2) Suppose the pressure at Cork is 1014hPa and at Sligo
is 1008hPa. Take the distance between Cork and Sligo to
be 330km. Assume the isobars are east-west, and assume
that Cork and Sligo are on the same meridian.
Calculate the acceleration due to the pressure gradient
(assume ρ = 1.2kgm−3).
What wind speed would give a Coriolis acceleration of the
same magnitude (take 2Ω sin φ = 10−4 s−1)?

[For further problems, see Holton, Chapter 1.]
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Alternative Treatment of Rotation
Let (X, Y, Z) be the coordinates in a fixed frame, and (x, y, z)
be those in a rotating frame. Suppose the rotating frame
spins about the Z-axis with angular velocity Ω. The coordi-
nates are related byX

Y
Z

 =

cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1

 x
y
z

 .

If we differentiate with respect to time, we getẊ

Ẏ

Ż

 =

cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1

 ẋ− Ωy
ẏ + Ωx

ż

 .

If we differentiate once again, we getẌ

Ÿ

Z̈

 =

cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1

 ẍ− 2Ωẏ − Ω2x

ÿ + 2Ωẋ− Ω2y
z̈

 .
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The equations of motion in non-rotating coordinates are

Ẍ = FX , Ÿ = FY , Z̈ = FZ .

Substituting from the matrix equation, we get

(ẍ− 2Ωẏ − Ω2x) cos Ωt− (ÿ + 2Ωẋ− Ω2y) sin Ωt = FX

(ẍ− 2Ωẏ − Ω2x) sin Ωt + (ÿ + 2Ωẋ− Ω2y) cos Ωt = FY

z̈ = FZ

Solving for the terms with ẍ and ÿ, we get

ẍ− 2Ωẏ − Ω2x = cos ΩtFX + sin ΩtFY ≡ Fx

ÿ + 2Ωẋ− Ω2y = cos ΩtFY − sin ΩtFX ≡ Fy

z̈ = FZ ≡ Fz

Thus, the rotation introduces additional terms:
The terms −2Ωẏ and 2Ωẋ are the Coriolis acceleration.
The terms Ω2x and Ω2y are the centrifugal acceleration.
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