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Lecture 2

The Continuity Equation
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Geophysical Fluid Dynamics

Geophysical Fluid Dynamics (GFD) is the study of the dy-
namics of the fluid systems of the earth and planets. The
principal fluid systems in which we are interested are the
atmosphere and the oceans.

Inland waters such as lakes and rivers, and glaciers and lava
systems as well as ground water and the molten outer core
of the earth could technically be included in GFD, but will
not be considered further.
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The basis of GFD lies in the principles of conservation of
momentum, mass and energy. These are expressed mathe-
matically in Newton’s equations of motion for a continuous
medium, the equation of continuity and the thermodynamic
energy equation.

We will first express the equations of motion in an inertial

framework

F = ma .
Then they will be transformed to a non-Newtonian coor-

dinate system which is fixed with respect to the earth, and
rotating with it.

But first we must consider some preliminary issues.
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Two Ways to Describe Fluid Flow

�Eulerian: Stay put and watch the flow

�Lagrangian: Drift along, see where you
go.

The independent variables are the space and time coordi-
nates, r = (x, y, z) and t.

The dependent variables are the velocity, pressure, density
and temperature, V = (u, v, w), p, ρ and T .

Further variables are needed for a fuller treatment, e.g.
humidity q in the atmosphere and salinity s in the ocean.

Each variable is a function of both position and time.

For example,

p = p(x, y, z, t)
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We must consider variations with respect to space and time.

p = p(x, y, z, t) .

�Eulerian: Stay put and watch the flow
We denote the change of pressure with time at a fixed point
by the Eulerian (or partial) derivative:

∂p

∂t
x, y and z fixed.

�Lagrangian: Drift along, see where you
go.

We denote the change of pressure with time following the flow
by the Lagrangian (or material or total) derivative:

dp

dt
parcel of fluid fixed.
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Digression Partial Derivatives

Partial derivatives were first introduced by the French math-
ematician Jean Le Rond d’Alembert (1717–1783) in connec-
tion with his meteorological studies.
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Euler and Lagrange Derivatives
�Eulerian or Local Change
Stand on a bridge, hang a thermometer into the stream.
The temperature you measure is at a fixed location. The
change in temperature is local, given by the partial time
derivative

∂T

∂t
Change at a fixed location.

�Lagrangian or Material Change
Float on a raft, hang a thermometer into the ocean. The
temperature you measure is at a point moving with the
current. The change in temperature is given by the total
time derivative

dT

dt
Change for a material parcel.
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Connection: ∂p/∂t ⇐⇒ dp/dt
The pressure is a function of both space and time:

p = p(x(t), y(t), z(t), t) .

The total variation, following the flow, is given by the
chain rule:

dp

dt
=

∂p

∂t
+

∂p

∂x
· dx

dt
+

∂p

∂y
· dy

dt
+

∂p

∂z
· dz

dt

=
∂p

∂t
+ u · ∂p

∂x
+ v · ∂p

∂y
+ w · ∂p

∂z

=
∂p

∂t
+ V · ∇p .

This is true for all variables, so we have

d( )

dt
=

∂( )

∂t
+ V · ∇( ) .
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Exercise: Local v. Material Change.
Suppose the flow is purely in the x-direction, given by

u = a sin(kx− ωt)

where the amplitude a, wavenumber k and frequency ω are constants.
We can also write u as

u = a sin k(x− ct)

where c = ω/k is the phase speed of the wave.
Calculate the local and total time derivative of u.

How do ∂u/∂t and du/dt change if u −→ 2u?

? ? ?

The Eulerian time derivative is a linear function of u:
∂u

∂t
=

(
∂a sin(kx− ωt)

∂t

)
x constant

= −ω · a cos(kx− ωt) .

The Lagrangian time derivative is
du

dt
=

∂u

∂t
+ u

∂u

∂x
= −ω · a cos(kx− ωt) + u[k · a cos(kx− ωt)] .

Note that du/dt is a nonlinear function of the amplitude a:

du

dt
=

[
k sin(kx− ωt) cos(kx− ωt)

]
a2 −

[
ω cos(kx− ωt)

]
a .
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Conservation of Mass

Air is neither created nor destroyed. Therefore, the total
mass must remain constant. Moreover, the mass of an iden-
tifiable parcel of air must remain unchanged with time.

The mathematical expression of mass conservation is the
Continuity Equation.

To illustrate the two methods of describing fluid flow, we
will derive the continuity equation in both Eulerian and
Lagrangian forms.

We must then show that the two forms are equivalent.
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Influx and Outflow

Eulerian Formulation

Consider a cubic region of di-
mensions ∆x = ∆y = ∆z, fixed
in space.

Air flows freely through the
region.

The change of mass of the air
in the cube must equal the net
flux of mass into or out of the
region.

For simplicity, consider flow
in the x-direction. Let uW be
the x-component of velocity
at the western face, and uE
be the x-component of veloc-
ity at the eastern face.
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Total mass of air in the box (density × volume):

M = ρ ·∆x∆y∆z = ρV
Change of mass in time ∆t (volume is fixed):

∆M =
∂M

∂t
∆t =

∂ρ

∂t
∆t · V .

Influx at western face (density × slab volume):

ρW(uW∆t)∆y∆z = (ρu)W∆t ·∆y∆z

Outflow at eastern face (density × slab volume):

ρE(uE∆t)∆y∆z = (ρu)E∆t ·∆y∆z

Net flow F into the box (influx − outflow) in time ∆t:

F = [(ρu)W − (ρu)E]∆t ·∆y∆z = −(ρu)E − (ρu)W
∆x

∆t ·∆x∆y∆z

But ∆M = F , so the quantities in red must be equal:

∂ρ

∂t
= −(ρu)E − (ρu)W

∆x
≈ −∂(ρu)

∂x
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Thus, for flow only in the x-direction we have

∂ρ

∂t
= −∂(ρu)

∂x
However, there is also flow through the front and back faces,
and through the top and bottom of the box.

Symmetry arguments lead us immediately to the result

∂ρ

∂t
= −

(
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z

)
This may be written using the divergence operator as

∂ρ

∂t
+∇·ρV = 0 .

This is the Eulerian form of the continuity equation. It is
one of the fundamental equations of atmospheric dynamics.

14

Lagrangian Formulation
We consider a parcel of air, of mass M , contained in a cube.1

But we allow the cube to move with the flow. The mass of
the parcel does not change with time.

Total mass of air in the box (density × volume):

M = ρ ·∆x∆y∆z = ρV
Change of mass in time ∆t must be zero:

∆M =
dM

dt
∆t = 0 so

dM

dt
= 0 so

d log M

dt
= 0 .

Since log M = log ρ + log ∆x + log ∆y + log ∆z, this means that

1

ρ

dρ

dt
+

(
1

∆x

d∆x

dt
+

1

∆y

d∆y

dt
+

1

∆z

d∆z

dt

)
= 0 (∗)

But now notice that ∆x = xE − xW so that

1

∆x

d∆x

dt
=

1

∆x

d(xE − xW)

dt
=

1

∆x

(
dxE

dt
− dxW

dt

)
=

uE − uW

∆x
≈ ∂u

∂x

1The assumption that the parcel is initially cubic is purely for mathematical simplicity. We can relax

it and consider an arbitrary parcel of mass M .
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Substituting in (*) we get

1

M

dM

dt
= 0 =

1

ρ

dρ

dt
+

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
or, rearranging terms,

dρ

dt
+ ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= 0 .

Using vector operators, this is

dρ

dt
+ ρ∇ ·V = 0 .

This is the Lagrangian form of the continuity equation.

? ? ?

We recall the Eulerian form, derived above:

∂ρ

∂t
+∇·ρV = 0 .

The two forms look different, but must be equivalent.
16



dρ

dt
+ ρ∇ ·V = 0︸ ︷︷ ︸

Lagrangian Form

∂ρ

∂t
+∇·ρV = 0︸ ︷︷ ︸

Eulerian Form
We recall the relationship between the time derivatives:

d( )

dt
=

∂( )

∂t
+ V · ∇( ) .

We also note the vector identity

∇·ρV = V · ∇ρ + ρ∇ ·V .

Substituting in the Lagrangian form, we get:

dρ

dt
+ ρ∇ ·V =

(
∂ρ

∂t
+ V · ∇ρ

)
+ ρ∇ ·V

=
∂ρ

∂t
+

(
V · ∇ρ + ρ∇ ·V

)
=

∂ρ

∂t
+∇·ρV = 0 .

Thus the equivalence of the two forms is established. QED
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Incompressibility
For an incompressible fluid, the volume of a parcel remains
unchanged. Thus, the material density is constant following
the flow: dρ/dt = 0. Thus, the continuity equation reduces
to

∇ ·V = 0 .

The assumption of incompressibility is a natural one for the
ocean. For the atmosphere, it is less obviously reasonable.
Indeed, many atmospheric phenomena depend on compress-
ibility. However, the essential large scale dynamics can be
successfully modelled by an incompressible fluid.
The benefit of assuming incompressibility is that we get a
closed system without having to consider the thermodynam-
ics explicitly. For compressible flow, we would have to have
another equation for ρ, the thermodynamic equation. But
this introduces the temperature T , and yet another equa-
tion, the equation of state, is required.
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Exercise Open Windows
Consider a square frame of dimensions 1m×1m. Suppose
the wind blows through the frame with speed 10ms−1. Com-
pute the volume of air which flows through the frame in ten
seconds.

Now imagine the frame is that of an open window in an oth-
erwise closed room of dimensions 5m×5m×4m. If initially
the pressure in the room equals the external pressure, by
what proportion will the pressure increase in ten seconds,
assuming that air continues to flow in at a constant rate?

Is the result physically reasonable? If not, discuss what
important physical factors may have been neglected. Can
you deduce a more reasonable value of the pressure increase.
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Answer:
Area of the frame (window):

A = 1 m× 1 m = 1 m2 .

Distance along wind in 10 seconds

d = V × t = 10 m s−1 × 10 s = 100 m .

Volume of air flowing through the frame:

d× A = 100 m× 1 m2 = 100 m3 .

Thus, 100 cubic metres of air flow through the frame in ten seconds.

The volume of the room is

V = 5 m× 5 m× 4 m = 100 m3 .

Thus, the air flowing in through the window in ten seconds equals the
volume initially within the room. Since the volume of the room is fixed,
the mass of air within it must double. Thus, the density must also
double. If the temperature remains constant, the pressure will double
too!

This result is surprising. We would not expect wind flowing through
an open window to cause such huge change in pressure. What has been
overlooked?
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The Forces on a Parcel of Air

21

Pressure Force
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-p(x) � p(x + ∆x)

Pressure on Box

Consider a cubic box of air, of
dimension ∆x×∆y ×∆z = V.

The pressure acts normally
on each face of the cube.

Net force on left-hand face:

p(x) ·∆y∆z

Net force on right-hand face:

−p(x + ∆x) ·∆y∆z

Total pressure force in the
x-direction:

−
[
p(x + ∆x)− p(x)

]
·∆y∆z
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Total pressure force in x-direction:

−
[
p(x + ∆x)− p(x)

]
·∆y∆z = −

(
p(x + ∆x)− p(x)

∆x

)
·∆x∆y∆z

But ∆x∆y∆z = V, so the force per unit volume is:

−
(

p(x + ∆x)− p(x)

∆x

)
≈ −∂p

∂x

A parcel of mass m has volume V = m/ρ, so a unit mass
has volume 1/ρ. The pressure force per unit mass in the
x-direction is thus

−1

ρ

∂p

∂x

Similar arguments apply in the y and z directions. So, the
vector force per unit mass due to pressure is

Fp =

(
−1

ρ

∂p

∂x
,−1

ρ

∂p

∂y
,−1

ρ

∂p

∂z

)
= −1

ρ
∇p .

This force acts in the direction of lower pressure.
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Exercise Amazing Pressure
This problem is to give you an impression of the surprising strength of atmospheric

pressure.

Consider a 20” television CRT screen, of width 16” and
height 12”.
Assume the atmospheric pressure is 105 Pa, and that there
is a perfect vacuum within the tube.

• What is the force on the screen due to air pressure?

• How does this force compare to that of a fat man (100kg)
standing on the screen: (a) much less; (b) similar; (c)
much greater?

? ? ?
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Answer:

First, the force due to atmospheric pressure:

p = 105 Pa = 105 N m−2

A = 16”× 12” ≈ 40 cm× 30 cm = 0.40 m× 0.3 m = 0.12 m2

F = pA = 105 × 0.12 = 12× 103 N = 12 kN .

Next, the force due to the fat man:

m = 102 kg , g = 10 m s−2

F = mg = 102 × 10 = 103 N = 1 kN .

Conclusion: (
Air

Pressure

)
∼

(
12 Fat

Men

)
This should convince you that differences in pressure can result in sig-
nificant forces. The pressure gradient force is dominant in atmospheric
dynamics.
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Exercise “The Spring of Air”
This expression was used by Robert Boyle for the tendency of air to resist compression.

Consider a cylinder with a piston which is free to move.
Suppose the fat man stands on the piston. Assume that the
temperature remains constant. Derive expressions for

� the pressure increase ∆p within the cylinder;

� the change in volume ∆V ;

� the work W done by the man in compressing the air;

� show that W = |∆p∆V |.
? ? ?

Calculate numerical values of ∆p, ∆V and W assuming the
initial volume is V = 1m3, the initial pressure is p = 105 Pa
and the fat man weighs m = 102 kg. Consider two values of
the cross-sectional area of the cylinder: (a) A = 1m2; (b)
A = 10−2 m2.
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Answer:
Without the fat man, the forces on the top and bottom of the piston
are

F↑ = pA F↓ = pA .

Naturally, they are equal. After he hops on board, the forces are:

F↑ = (p + ∆p)A F↓ = pA + mg .

These must also be equal, hence

∆p =
mg

A
.

By Boyle’s Law, the product of pressure and volume is constant. Thus

(p + ∆p)(V + ∆V ) = pV

which, rearranging terms, leads to

∆V = − V ∆p

p + ∆p

The work done by the man is force multiplied by distance. But the
distance is ∆h = ∆V/A, so

W = mg ×∆h =
(mg

A

)
∆V = ∆p ·∆V

which completes the first part of the answer.
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The fixed values are V = 1m3, p = 105 Pa and m = 102 kg.
We consider two values of A.

(a) A = 1m2. Therefore the height of the air column is h = V/A = 1m.

∆p =
mg

A
=

102 × 10

1
= 103 Pa .

The percentage change in pressure is 100∆p/p = 1%.

The volume change is

∆V = − V ∆p

p + ∆p
= − 1× 103

(105 + 103)
≈ −1× 103

105
= −10−2 m3 .

The percentage volume decrease is 100|∆V |/V = 1%.

The work done is

W = ∆p ·∆V = 103 × 10−2 = 10 J .

(b) A = 10−2 m2. Therefore the height of the air column is h = V/A =
102 m.

∆p =
mg

A
=

102 × 10

10−2
= 105 Pa .

The percentage change in pressure is 100∆p/p = 100%.

The volume change is

∆V = − V ∆p

p + ∆p
= − 1× 105

(105 + 105)
= −0.5 m3 .
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The percentage volume decrease is 100|∆V |/V = 50%.

The work done is

W = ∆p ·∆V = 105 × 0.5 = 5× 104 J = 50 kJ

which is 5000 times greater than in the previous case.

Remarks:

• The above results imply that we can compress air to an arbitrary
state by using a cylinder of sufficiently small cross-section. Is this
physically reasonable?

• The work done in compressing the gas must go somewhere. Where
does it go?

• Compare two cases: (a) Isothermal, where the cylinder is immersed
in a bath of water held at a constant temperature; (b) Adiabatic,
where the cylinder is insulated, so that no heat enters or leaves.
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Force of Gravity
Newton’s law of gravity states that two bodies of mass m1
and m2 attract each-other with a force given by

F = G
m1m2

d2

where d the distance between them. The constant G is the
universal gravitational constant.

Near the earth’s surface, a parcel of air of mass m is at-
tracted towards the earth with a force

F = m
GM

a2

where M is the mass of the earth and a its radius.

We define the acceleration due to gravity by

g =
GM

a2

30

The acceleration due to gravity can be evaluated as follows:

G = 6.672×10−11 , M = 5.974×1024 , a = 6.375×106 =⇒ g = 9.807

(all values are in SI units). So, roughly, g ≈ 10ms−2.

The force due to gravity acts vertically downward, towards

the centre of the earth. If k is a unit vector pointing upward,

we may write it:

Fg = −mgk .

? ? ?
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Digression Definition of Metre
A simple way to remember the earth’s radius.

• The metre is defined in terms of the size of the earth.

• The distance from the equator to the pole is 10 million
metres.

• Thus, the circumference of the earth is 4× 107 m.

• Thus, the radius of the earth is

a =
4× 107

2π
≈ 6.366× 106 m .
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