SEMESTER I EXAMINATION 2010/2011

ACM 40460
Dynamic Meteorology

Extern examiner: Professor Peter A Clark
Head of School: Professor Mícheál Ó Searcoid
Lecturer: Professor Ray Bates

Time Allowed: 2 hours

Instructions for Candidates
Answer three (3) questions.
All questions carry equal marks. Total: 75 marks.
Please do not use red pen on the answer books.
Please use separate answer book for each question.

Instructions for Invigilators
Non-programmable calculators may be used during this examination.
Question 1. [Marks: (a): 5, (b): 10, (c): 10]

(a) Define potential temperature (Θ). Show that when Θ is constant with height (z) the lapse rate of temperature is given by

$$\Gamma_d = -\frac{dT}{dz} = \frac{g}{c_p}$$

(1.1)

where g is the acceleration of gravity and c_p is the specific heat of dry air at constant pressure. (Assume the atmosphere is hydrostatically balanced.)

(b) Given the thermodynamic energy equation in the form

$$c_v \frac{DT}{Dt} + p \frac{D\alpha}{Dt} = J$$

(1.2)

where c_v is the specific heat of dry air at constant volume, α is the specific volume and J the diabatic heating rate per unit mass, show that this equation can be written in terms of potential temperature as

$$\frac{D\Theta}{Dt} = \frac{\Theta}{c_p} J$$

(1.3)

(Use the standard thermodynamic relationship $R = c_p - c_v$).

Hint: You may work backwards from (1.3) using the definition of Θ if you wish.

(c) Show that in the isobaric coordinate system eq. (1.2) can be written in the form

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} - S_p \omega = \frac{J}{c_p}$$

(1.4)

where

$$S_p = \frac{\alpha}{c_p} \frac{\partial T}{\partial p}$$

(1.5)

Note: $\omega \equiv Dp/Dt$.

Question 2. [Marks: (a): 5, (b): 13, (c): 7]

(a) State the assumptions used in constructing the shallow water model with a free surface of height $h_T(x,y,t)$, bottom topography $h_s(x,y)$ and fluid depth $h(x,y,t)$ on a β-plane.

(b) Starting from the primitive equations of motion on a β-plane and using the above assumptions, show that the governing equations for the model in question are

$$\frac{Du}{Dt} = f v - \frac{\partial \Phi_T}{\partial x}$$

(2.1)

$$\frac{Dv}{Dt} = -fu - \frac{\partial \Phi_T}{\partial y}$$

(2.2)

$$\frac{Dh}{Dt} = -h \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)$$

(2.3)

where $\Phi_T = gh_T$.
c) Derive the linearized form of the above equations for small perturbations about a state of rest for the case where \(h_c = 0 \) and \(\beta = 0 \). Hence show the existence of 1D gravity-inertia wave solutions with phase speed

\[
c = \pm \left(gH + \frac{f_0^2}{k^2} \right)^{1/2}
\] \(\text{(2.4)} \)

where \(H \) is the mean depth of the fluid and \(k \) is the wavenumber in \(x \).

Question 3. [Marks. (a): 11. (b): 14]

a) The quasi-geostrophic potential vorticity equation for the free-surface shallow water model on a \(\beta \)-plane \((f = f_0 + \beta y) \) is given by

\[
\frac{D_{g}}{Dt} \left[\nabla^2 \psi' + f - \frac{\psi'}{\lambda^2} \right] = -\frac{f_0}{\Phi_0} \frac{D_{g} \Phi'_z}{Dt}
\] \(\text{(3.1)} \)

where \(D_{g} / Dt \) is the material derivative following the geostrophic motion, \(\psi \) is the geostrophic streamfunction, \(\nabla^2 \) is the horizontal Laplacian, \(\lambda = \sqrt{\Phi_0 / f_0} \), \(\Phi_0 \) is the mean geopotential of the free surface and \(\Phi'_z \) is the geopotential of the orography (assumed small by comparison with \(\Phi_0 \)).

Using the linearized perturbation form of (3.1) for a resting basic state with \(\Phi'_z = 0 \), derive the phase speed for a 1D Rossby wave propagating in the \(x \)-direction in this model.

b) Again using (3.1) but neglecting \(\beta \), derive the solution for the perturbation streamfunction \(\psi' \) in the case of steady motion forced by a mean current \(\bar{u} \) blowing over orography of the form

\[
\Phi'_z = \text{Re} \left[\Phi'_z \exp(ikx) \right]
\] \(\text{(3.2)} \)

Hint: Since the forcing has spatial dependence of the form \(\exp(ikx) \), the solution may also be assumed to have spatial dependence of this form.

(a) Show that in a hydrostatic atmosphere the internal and gravitational potential energies are proportional and that the sum of these two forms of energy (i.e., the total potential energy – TPE) can be written

\[
TPE = \left(\frac{c_p}{c_v} \right) E_I
\] \(\text{(4.1)} \)
where c_p and c_v are the specific heats of air at constant pressure and constant volume, respectively, and E_1 is the internal energy.

(b) Show that the TPE of a unit column of atmosphere of uniform potential temperature θ extending from the surface ($p=p_0$) to the top of the atmosphere ($p=0$) is

$$TPE = \frac{c_p}{g} \frac{p_0 \theta}{\kappa + 1}$$ \hspace{1cm} (4.2)

where $\kappa = R/c_p$ and g is the acceleration of gravity.

(c) Consider two air masses of uniform potential temperatures θ_1 and θ_2 ($\theta_2 > \theta_1$) which are separated by a vertical partition. Each air mass occupies a horizontal area A and extends from the surface (where $p=p_0$ for each) to the top of the atmosphere. Show that the available potential energy for this system is given by

$$APE = \frac{c_p}{g} \frac{p_0}{\kappa + 1} \left(1 - \frac{1}{2^\kappa} \right) (\theta_2 - \theta_1)A$$ \hspace{1cm} (4.3)

(a) Given the following governing equations for the two-layer model of baroclinic instability

$$\left(\frac{\partial}{\partial t} + U_1 \frac{\partial}{\partial x} \right) \frac{\partial^2 \psi_1}{\partial x^2} + \beta \frac{\partial \psi_1}{\partial x} = \frac{f_0}{\sigma} \omega'$$ \hspace{1cm} (5.1)

$$\left(\frac{\partial}{\partial t} + U_3 \frac{\partial}{\partial x} \right) \frac{\partial^2 \psi_3}{\partial x^2} + \beta \frac{\partial \psi_3}{\partial x} = \frac{f_0}{\sigma} \omega'$$ \hspace{1cm} (5.2)

$$\left(\frac{\partial}{\partial t} - U_m \frac{\partial}{\partial x} \right) (\psi_1' - \psi_3') - U_r \frac{\partial}{\partial x} (\psi_1' + \psi_3') = \frac{\sigma f_0}{\sigma f_0} \omega'$$ \hspace{1cm} (5.3)

where $U_m = (U_1 + U_3)/2$ and $U_r = (U_1 - U_3)/2$, show that the rate of change of the sum of the kinetic and available potential energies is

$$\frac{d}{dt} (K' + P') = 4\lambda^2 U_r \frac{\partial \psi_m}{\partial x}$$ \hspace{1cm} (5.4)
where \(\psi_m = \left(\psi_1' + \psi_3' \right) / 2 \), \(\psi_r = \left(\psi_1' - \psi_3' \right) / 2 \), \(\lambda^2 = \left(f_0 \right)^2 / \sigma(\delta \psi)^2 \) and \(\overline{\cdots} \) denotes an average over the wavelength of the disturbance.

(b) Discuss the energetics of baroclinic waves qualitatively using a box diagram involving \(\bar{P} \) (the mean available potential energy), \(P' \) and \(K' \).

(c) Discuss the physical mechanism of baroclinic instability in terms of the slope of particle trajectories ('the wedge of instability').