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I. BACKGROUND AND MOTIVATION FROM
NEWTONIAN THEORY

A. Newtonian potential

The potential U of Newtonian gravity is a solution to
Poisson’s equation ∇2U = −4πGρ, where ρ is the mass
density. The solution is given by

U(r) = G

∫
ρ(r′)

|r − r′|
dV ′, (1.1)

where r is the position at which the potential is evalu-
ated, r′ is a position within the matter distribution, and
dV ′ is the element of volume at position r′.

A spherical body of mass M and radius R has a po-
tential given simply by U = GM/r outside the body
(r > R).

B. Quadrupole deformation

We take the body to be slightly nonspherical, and de-
scribe its deformation from spherical symmetric by a per-
turbation of the potential U = GM/r. We take r > r′ in
Eq. (1.1), and insert the identity

1

|r − r′|
=

∞∑
`=0

r′`

r`+1
P`(cos γ), (1.2)

where γ is the angle between the vectors r and r′, and
P` are Legendre polynomials. The term ` = 0 reproduces
GM/r, the term ` = 1 vanishes by virtue of the definition
of the centre of mass, and the leading term describing the
deformation is ` = 2. For an axisymmetric body, we have
that the potential becomes

U =
GM

r
+
GQ

r3
P2(cos θ), (1.3)

where θ is the angle between r and the body’s symmetry
axis, and

Q =

∫
ρ(r′, θ′)r′2P2(cos θ′) dV ′ (1.4)

is the body’s quadrupole moment. The second term in
the potential describes the body’s quadrupole deforma-
tion.

One of the themes explored below (Sec. II C) is whether
a black hole is capable of supporting a permanent
quadrupole moment.

C. Tidal field

Next we take the body to be spherical, and put it in the
presence of a remote companion of mass M ′ at position b
relative to the body’s centre of mass. The total potential
is now

U =
GM

r
+ Uext, Uext =

GM ′

|r − b|
. (1.5)

We assume that b� r, and exploit the identity

1

|r − r′|
=

∞∑
`=0

r`

b`+1
P`(cos θ), (1.6)

where θ is now the angle between r and b. The term
` = 0 in Uext gives rise to an irrelevant constant, the
term ` = 1 gives rise to a constant force responsible for
the body’s centre-of-mass motion around its companion,
and the ` = 2 term gives a leading-order description of
the tidal forces exerted on M by M ′. The total potential
is then

U =
GM

r
+
GM ′

b3
r2P2(cos θ), (1.7)

and the second term describes the small perturbation as-
sociated with the tidal forces exerted by M ′.

One of the themes explored below (Sec. II D) is whether
a black hole undergoes a deformation when it is subjected
to a tidal field.

D. Love number

Even when it is originally spherical, a body will re-
spond to tidal forces and undergo a slight deformation.
We can expect that the deformation, measured by the
quadrupole moment Q, will be proportional to the tidal
field, measured by GM ′/b3. We express this as

GQ = 2kR5GM
′

b3
, (1.8)

where 2k is a dimensionless factor, and the factor R5

was inserted to respect the dimensionality of Q, which
has units of [mass] × [length]2. The number k is known
as the quadrupolar Love number, and its value depends
on the body’s internal structure. The total potential is

U =
GM

r
+
GM ′

b3

[
1 + 2k(R/r)5

]
r2P2(cos θ). (1.9)
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In the square brackets, the first term represents the ap-
plied tidal field, and the Love-number term represents
the body’s tidal deformation.

One of the themes explored below (Sec. II E) is the
calculation of the quadrupolar Love number for a black
hole.

II. QUADRUPOLE DEFORMATION OF A
SCHWARZSCHILD SPACETIME

The main goal of this Practicum is to construct a time-
independent, quadrupole perturbation of a Schwarzschild
spacetime, and to extract its physical significance for
black holes. A complete listing of the perturbation equa-
tions is given in the Appendix. To connect the tasks
below to the Newtonian discussion of Sec. I, it is good to
define an effective Newtonian potential Ueff by

gtt = −1 + 2Ueff . (2.1)

For the Schwarzschild solution, gtt = −(1 − 2M/r), and
Ueff = M/r, the same expression as in Newtonian gravity
(in geometrized units with G = c = 1).

A. Task 1: Reduction of the equations

We insert ` = 2 in the equations listed in the Ap-
pendix, and since the perturbation is assumed to be t-
independent, we eliminate all time derivatives. To keep
the task reasonable and connected to the Newtonian dis-
cussion of Sec. I, we take the perturbation to be of even
parity, and ignore all odd-parity terms. In the Regge-
Wheeler gauge, the perturbation is therefore described
entirely by htt(r), htr(r), hrr(r), and K(r). We construct
a vacuum perturbation of the Schwarzschild spacetime,
for which Ġαβ = 0.

1. Show that the Qtr = 0 equation implies that htr =
0.

2. Show that the Q] = 0 equation implies that htt =
f2hrr, where f = 1−2M/r. The primary variables
become hrr and K.

3. Combine the Qrr = 0 and Qr = 0 equations to
eliminate the K ′ term, in which a prime indicates
differentiation with respect to r, and obtain

K =
1

2
Mfh′rr + (1−M/r)hrr. (2.2)

This equation determines K once hrr is known.

4. Differentiate the previous equation with respect to
r, and insert it within the Qr = 0 equation. Show
that the equation becomes

r(r − 2M)h′′rr + 2(r +M)h′rr − 6hrr = 0. (2.3)

This is the equation that determines hrr.

B. Task 2: Solutions to the equations

Equation (2.3) takes the form of the hypergeomet-
ric equation, but the resulting series doesn’t converge.
We must proceed differently to find its solution. Be-
fore we do we recall how one can find a second solution
to a second-order differential equation once a first solu-
tion is known. For a differential equation of the form
y′′ + p(r)y′ + q(r)y = 0, if y(1) is a solution, then

y(2) = y(1)(r)

∫ r

e−w(r′)
[
y(1)(r′)

]−2
dr′ (2.4)

is another solution, where w(r) =
∫ r
p(r′) dr′.

1. Show that

h(1)
rr = r2 (2.5)

is a solution to Eq. (2.3).

2. Find a second solution using the strategy described
previously. Show that it can be put in the form

h(2)
rr = −10

[
3r2 ln f

+
2M(r −M)(3r2 − 6Mr − 2M2)

(r − 2M)2

]
. (2.6)

3. Show that when M/r � 1, h
(2)
rr ∼ (2M)5/r3. This

requires taking a Taylor expansion in powers of
M/r to at least five orders.

4. Find the corresponding expressions for K.

C. Task 3: Black hole with a quadrupole moment

In this section we ask whether it is possible for a black
hole to support a permanent quadrupole moment, like a
material body can (in both Newtonian theory and general
relativity).

1. Identify the solution to the perturbation equations
that would describe a quadrupole deformation of a
black hole.

2. Is this solution acceptable physically? If so, why?
If not, why not?

3. If you concluded that the solution is unacceptable,
and that a black hole cannot support a quadrupole
deformation, explain why the objection doesn’t
hold for a material body.
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D. Task 4: Black hole in a tidal field

In this section we ask whether a black hole deforms
when it is subjected to tidal forces exerted by a remote
companion.

1. Identify the solution to the perturbation equations
that would describe a black hole immersed in a tidal
field.

2. Is this solution acceptable physically? If so, why?
If not, why not?

3. If you concluded that the solution is acceptable,
describe what changes, if any, would be required if
the black hole were replaced by a material body.

E. Task 5: Love number of a black hole

In this section we calculate the quadrupolar Love num-
ber of a black hole.

1. Identify the solution to the perturbation equations
that would describe a black hole deforming under
the action of an applied tidal field.

2. Is this solution acceptable physically? If so, why?
If not, why not?

3. If you concluded that the solution is unacceptable,
what is k for a black hole?

4. If you concluded that the solution is unacceptable
for a black hole, would it be acceptable for a ma-
terial body? Describe what would be required to
calculate k in this case.

F. Task 6: Regularity at r = 2M

The answer to many of the preceding questions relied
on the property that the second solution to the pertur-
bation equations becomes infinite at r = 2M . The argu-
ment is that such a perturbation cannot describe a black
hole with a nonsingular event horizon.

The argument is made subtle by the fact that the co-
ordinates (t, r, θ, φ) are singular at r = 2M . Regularity
of the event horizon is therefore difficult to verify in this
coordinate system. A way to cope is to work with co-
ordinates that are regular across r = 2M . The simplest

system is (v, r, θ, φ), where v = t+ r∗ with

r∗ =

∫
f−1 dr = r + 2M ln(r/2M − 1). (2.7)

The new time coordinate, known as advanced time, is
constant on radial null geodesics that converge toward
the black hole.

1. Verify that the Schwarzschild metric is regular at
r = 2M when expressed in the (v, r, θ, φ) coordi-
nates.

2. Verify that the first solution to the perturbation
equations is regular at r = 2M when transformed
to the (v, r, θ, φ) coordinates.

3. Verify that the second solution to the perturbation
equations diverges logarithmically at r = 2M when
transformed to the (v, r, θ, φ) coordinates.

Appendix A: Perturbation equations

We consider a perturbation of the Schwarzschild space-
time, with unperturbed metric

ds2 = −f dt2 + f−1 dr2 + r2 dΩ2, (A1)

where f = 1 − 2M/r. In the Regge-Wheeler gauge, the
metric perturbation is decomposed as

pab =
∑
`m

h`mab (t, r)Y `m(θ, φ), (A2a)

paB =
∑
`m

h`ma (t, r)X`m
A (θ, φ), (A2b)

pAB = r2
∑
`m

K`m(t, r)ΩABY
`m(θ, φ), (A2c)

where indices a, b, · · · refer to the coordinates (t, r), while
indices A,B, · · · refer to (θ, φ). The perturbed Einstein
tensor is decomposed as

Ġab =
∑
`m

Q`mab Y
`m, (A3a)

ĠaB =
∑
`m

Q`ma Y `mA +
∑
`m

P `ma X`m
A , (A3b)

ĠAB =
∑
`m

[
Q`m[ ΩABY

`m +Q`m] Y `mAB

]
+
∑
`m

P `mX`m
AB . (A3c)

Apart from unimportant numerical factors, the explicit
expressions are
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Qtt = − ∂2

∂r2
K − 3r − 5M

r2f

∂

∂r
K +

f

r

∂

∂r
hrr +

(λ+ 2)r + 4M

2r3
hrr +

µ

2r2f
K, (A4a)

Qtr =
∂2

∂t∂r
K +

r − 3M

r2f

∂

∂t
K − f

r

∂

∂t
hrr −

λ

2r2
htr, (A4b)

Qrr = − ∂2

∂t2
K +

(r −M)f

r2

∂

∂r
K +

2f

r

∂

∂t
htr −

f

r

∂

∂r
htt +

λr + 4M

2r3
htt −

f2

r2
hrr −

µf

2r2
K (A4c)

Qt =
∂

∂t
hrr −

∂

∂r
htr +

1

f

∂

∂t
K − 2M

r2f
htr, (A4d)

Qr = − ∂

∂t
htr +

∂

∂r
htt − f

∂

∂r
K − r −M

r2f
htt +

(r −M)f

r2
hrr, (A4e)

Q[ = − ∂2

∂t2
hrr + 2

∂2

∂t∂r
htr −

∂2

∂r2
htt −

1

f

∂2

∂t2
K + f

∂2

∂r2
K +

2(r −M)

r2f

∂

∂t
htr −

r − 3M

r2f

∂

∂r
htt

− (r −M)f

r2

∂

∂r
hrr +

2(r −M)

r2

∂

∂r
K +

λr2 − 2(2 + λ)Mr + 4M2

2r4f2
htt −

λr2 − 2µMr − 4M2

2r4
hrr, (A4f)

Q] =
1

f
htt − fhrr (A4g)

in the even-parity sector, and

P t = − ∂2

∂t∂r
hr +

∂2

∂r2
ht −

2

r

∂

∂t
hr −

λr − 4M

r3f
ht, (A5a)

P r =
∂2

∂t2
hr −

∂2

∂t∂r
ht +

2

r

∂

∂t
ht +

µf

r2
hr, (A5b)

P = − 1

f

∂

∂t
ht + f

∂

∂r
hr +

2M

r2
hr (A5c)

in the odd-parity sector. We write λ = `(` + 1) and µ = (` − 1)(` + 2). By virtue of the Bianchi identities, the

components of Ġαβ are not all independent from each other. There is redundancy in the system of perturbation
equations.


