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Why perturbation theory?

The big book lists thousands of exact solutions to the Einstein field
equations. Mathematically, this is an impressive feat.

Physically, only a few solutions are useful: Schwarzschild, Kerr,
FLRW, Vaidya, Majumdar-Papapetrou, Weyl, C-metric,
Robinson-Trautman, . . .

There is no exact solution that describes the inspiral of two
compact bodies and the emitted gravitational waves.

For this we need sophisticated computational methods, or
perturbation theory.

Perturbation theory is also extremely relevant to early-universe
cosmology.
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Perturbation about what? Expansion parameter?

post-Minkowskian theory: About Minkowski spacetime, in
powers of G

post-Newtonian theory: About Minkowski spacetime, in
powers of c−2

Schwarzschild perturbation theory: About Schwarzschild
spacetime, in powers of a perturbing mass m

Kerr perturbation theory: About Kerr spacetime, in powers of
a perturbing mass m

FLRW perturbation theory: About FLRW spacetime, in
powers of density fluctuation δρ
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Overlapping domains

Different perturbation methods can overlap in a common domain
of validity. [Leor Barack: GR21]

Domains of the 2-body problem in GR

GR21 @ NYC ()Gravitational self-force L. Barack
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Perturbation theory: Algebra

[C. Bender & S. Orszag, Advanced Mathematical Methods for Scientists and Engineers]

Consider the algebraic problem

(x− 1)(x+ 2)(x+ 3)(x+ 4) + ε = 0, x > 0, ε� 1

An exact solution is not available.

Postulate the existence of a one-parameter family of variables
x(λ), with λ ∈ [0, ε], given by

x(λ) = 1 + x1λ+
1

2
x2λ

2 +
1

6
x3λ

3 +
1

24
x4λ

4 + · · ·

xn =
dnx(λ)

dλn

∣∣∣∣
λ=0
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Perturbation theory: Algebra

Substitute x(λ), set λ = ε, and solve order by order in ε.

The result is

x1 = − 1

60
, x2 = − 47

108000

x3 = − 1849

64800000
, x4 = − 70703

23328000000

For ε = 0.1, x[numerical]− x(ε) ' −3.71× 10−14.

Typically one cannot know whether the series in powers of λ
converges. Typically the series is only asymptotic.
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Perturbation theory: Differential equation

Consider the ordinary, second-order differential equation

y′′ + (1− εx)y = 0, y(0) = 1, y(π/2) = 0

The exact solution involves Airy functions. Pursue instead a
perturbative approach.

Postulate the existence of a one-parameter family of functions
y(λ, x), with λ ∈ [0, ε], given by

y(λ, x) = cosx+ y1(x)λ+
1

2
y2(x)λ2 +

1

6
y3(x)λ3 + · · ·

yn(x) =
∂ny(λ, x)

∂λn

∣∣∣∣
λ=0

yn(0) = 0, yn(π/2) = 0
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Perturbation theory: Differential equation

Substitute y(λ, x) within the differential equation, set λ = ε, and
solve order by order in ε.

The result is

y1 =
1

4
x cosx+

1

16
(4x2 − π2) sinx

y2 = − 1

32
x2(2x2 − 10− π2) cosx

+
1

96
(2x− π)(10x2 + 5πx− 15 + π2) sinx

y3 = · · ·

In this case, |y1| < 0.18829, |y2| < 0.10029, and |y3| < 0.08101.
Successive terms become progressively smaller.
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Singular perturbation theory

A straightforward expansion in powers of λ is not always adequate
in perturbation problems.

This is the case, for example, in problems like

εx4 + 8x3 + 17x2 − 2x− 24 = 0

εy′′ + y′ − 1 = 0

In such problems, the “small term” changes the character of the
equation.

Other perturbative techniques are required: scale transformation,
boundary-layer theory, multi-scale analysis, . . .

This is the realm of singular perturbation theory.
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Linearized general relativity

We wish to solve the Einstein field equations

Gαβ[g] = 8πTαβ[g]

when the energy-momentum tensor Tαβ ∝ ε is small and
deviations from flat spacetime are also small.

We postulate the existence of a one-parameter family of metrics

gαβ(λ, x) = ηαβ + p1
αβ(x)λ+

1

2
p2
αβ(x)λ2 + · · ·

pnαβ(x) =
∂ngαβ(λ, x)

∂λn

∣∣∣∣
λ=0

We substitute gαβ(λ, x) within the field equations, set λ = ε, and
solve order by order in ε.
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Linearized general relativity

Complication: pnαβ can be changed arbitrarily by a coordinate
transformation

xα → xα(λ) = xα + Ξα1 (x)λ+
1

2
Ξα2 (x)λ2 + · · ·

Solution: Impose a coordinate condition (also known as a gauge
condition) to eliminate this redundancy.

Linearized general relativity

hαβ := p1
αβ −

1

2
ηαβ
(
ηµνp1

µν

)
(trace reversal)

∂βh
αβ = 0 (coordinate condition)

�hαβ = −16πTαβ[η] (field equations)
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Generalization to any background spacetime

A perturbation can be carried out about any background
spacetime with metric g(0):

gαβ(λ, x) = gαβ(0, x) + p1
αβ(x)λ+

1

2
p2
αβ(x)λ2 + · · ·

We assume, for simplicity, that Gαβ[g(0)] = 0, and that the source
of the perturbation is some energy-momentum tensor ε Tαβ[g].

Then

Gαβ[g(λ)] = Gαβ[g(0) + p1 λ+ · · · ] = λ Ġαβ[g(0), p1] + · · ·
ε Tαβ[g(λ)] = ε Tαβ[g(0) + p1 λ+ · · · ] = ε Tαβ[g(0)] + · · ·

where Ġαβ = (∂/∂λ)Gαβ|λ=0.
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Generalization to any background spacetime

We then set λ = ε and obtain the perturbation equation

Ġαβ[g(0), p1] = 8πTαβ[g(0)]

The left-hand side takes the form of a differential operator acting
on p1

αβ, which can be thought of as a tensor field in the
background spacetime.

To this we must adjoin a coordinate condition

L α[g(0), p1] = 0
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Geometry of a perturbation

A perturbation takes a background spacetime (M(0), g(0)) to a
perturbed spacetime (M(ε), g(ε)).

We describe this in terms of a one-parameter family of spacetimes
(M(λ), g(λ)) with λ ∈ [0, ε].

The entire family defines a 5D manifold (with boundaries), and
each M(λ) is an embedded submanifold.

We wish to define the perturbation of a tensorial quantity Q(0, x)
(for example, the Riemann tensor) on M(0).

For this we need Q(λ, x) and an identification map between
points on M(λ) and points on M(0).
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Identification map

We introduce a vector field v on the 5D manifold, which is
transverse (nowhere tangent) to each M(λ). We let φ(λ) be the
integral curves of v = ∂/∂λ.

A point p(λ) on M(λ) is identified with a point p(0) on M(0) if
they lie on the same integral curve.

Eric Poisson Lectures on black-hole perturbation theory
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Perturbation defined

The perturbation of Q(0, x) is then defined by

Q̇(x) :=
∂Q(λ, x)

∂λ

∣∣∣∣
λ=0

= £vQ

∣∣∣∣
λ=0

The perturbation refers to a choice (v, φ) of
identification map. If we introduce another
map (w,ψ), we get a different perturbation.

Difference between equivalent perturbations

Q̇[φ]− Q̇[ψ] = £vQ−£wQ = £v−wQ = £ΞQ

where Ξ := (v − w)λ=0 is tangent to M(0).

This is the geometrical view on “gauge transformations”.
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Perturbation of a Schwarzschild black hole

Suppose that we are interested in calculating the gravitational
waves emitted by a small particle of mass m on a bound orbit
around a Schwarzschild black hole of mass M � m.

r/R

ν
/
(G

M
/R

)

����

����

����

����

��

����

����

����

����

�� ���� ���� ���� ���� ���� ����

�
��
�
��
�
��
�
�
�
��
�
�
�
�

����

������
������

Eric Poisson Lectures on black-hole perturbation theory



Introduction and motivation General relativity Schwarzschild Kerr

Perturbation of a Schwarzschild black hole

We begin with the background Schwarzschild metric

gαβ(0) dxαdxβ = −f dt2 + f−1 dr2 + r2 dΩ2, f = 1− 2M/r

We place the mass m on a geodesic of this spacetime, and
introduce its energy-momentum tensor Tαβ, a delta function with
support on the geodesic.

Next we introduce the perturbation p1
αβ = ġαβ and impose a

coordinate condition L α[p1] = 0.

Finally we integrate the perturbation equations

Ġαβ[g(0), p1] = 8πTαβ[g(0)]

and extract the gravitational waves at infinity.
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Decomposition in spherical harmonics (3D space)

The Schwarzschild spacetime is spherically symmetric. This
motivates a decomposition of pαβ in spherical harmonics.

Scalar harmonics

Any function h(θ, φ) can be decomposed in spherical harmonics,

h(θ, φ) =

∞∑
`=0

∑̀
m=−`

h`mY
`m(θ, φ)

Vector harmonics (Cartesian components)

To decompose a vector v(θ, φ) we need a vectorial basis,

Y `m
1 = r Y `m (vector)

Y `m
2 = ∇Y `m = θ ∂θY

`m + φ ∂φY
`m (vector)

Y `m
3 = r ×∇Y `m = −θ ∂φY `m + φ ∂θY

`m (axial vector)
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Vector harmonics (spherical components)

It is useful to distinguish vr from vA = (vθ, vφ).

Decompositions

vr =
∑
`m

a`mY
`m (scalar on S2)

vA =
∑
`m

(
b`mY

`m
A + c`mX

`m
A

)

Vector harmonics

Y `m
A = ∂AY

`m (vector on S2)

X`m
A = ε B

A ∂BY
`m (axial vector on S2)

ε B
A = Levi-Civita tensor on S2
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Tensor harmonics

For a symmetric tensor we have the components vrr (scalar on
S2), vrA (vector on S2), and vAB (tensor on S2).

It is useful to decompose vAB into trace and tracefree pieces,

vAB =
1

2
vΩAB + v̂AB

v = ΩABvAB (scalar), v̂AB = vAB −
1

2
vΩAB

where ΩAB is the metric on the unit 2-sphere,

dΩ2 = ΩAB dθ
AdθB = dθ2 + sin2 θ dφ2

To define the tensorial harmonics we shall also need DA, the
covariant derivative on the unit 2-sphere.
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Tensor harmonics

Decompositions

vrr =
∑
`m

b`mY
`m

vrA =
∑
`m

(
b`mY

`m
A + c`mX

`m
A

)
vAB =

∑
`m

(
d`mΩABY

`m + e`mY
`m
AB + f`mX

`m
AB

)

Tensor harmonics

Y `m
AB = DADBY

`m +
1

2
`(`+ 1)ΩABY

`m (tensor on S2)

X`m
AB = DAX

`m
B +DBX

`m
A (axial tensor on S2)
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Decomposition of the metric perturbation

[K. Martel and E. Poisson, Phys. Rev. D 71, 104003 (2005)]

pab = (ptt, ptr, prr) behaves as a scalar on S2

paB = (ptθ, ptφ, prθ, prφ) behaves as a vector
pAB = (pθθ, pθφ, pφφ) behaves as a tensor

Decomposition

pab =
∑
`m

h`mab (t, r)Y `m(θ, φ)

paB =
∑
`m

j`ma (t, r)Y `m
A (θ, φ) +

∑
`m

h`ma (t, r)X`m
A (θ, φ)

pAB = r2
∑
`m

[
K`m(t, r)ΩABY

`m(θ, φ) +G`m(t, r)Y `m
AB(θ, φ)

]
+
∑
`m

h`m2 (t, r)X`m
AB(θ, φ)
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Parity

Even-parity sector (polar perturbations)

On S2, Y `m behaves as a scalar, Y `m
A behaves as a vector, and

Y `m
AB behaves as a tensor. They are said to have even parity under

a transformation r → −r.

The associated variables h`mab , j`ma , K`m, and G`m make up the
even-parity sector of the perturbation, also known as polar
perturbations.

Odd-parity sector (axial perturbations)

On S2, X`m
A behaves as an axial vector, and X`m

AB behaves as an
axial tensor. They are said to have odd parity.

The associated variables h`ma and h`m2 make up the odd-parity
sector of the perturbation, also known as axial perturbations.

Eric Poisson Lectures on black-hole perturbation theory
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Coordinate conditions

Two perturbations, pαβ and p′αβ, are equivalent when they are
related by gauge transformation

p′αβ − pαβ = £Ξ gαβ = ∇αΞβ +∇βΞα

This freedom can be exploited to impose simplifying conditions on
the perturbation.

A very popular choice of coordinate condition is the

Regge-Wheeler gauge

j`ma = 0 = G`m (even parity), h`m2 = 0 (odd parity)

Other choices of gauge can be formulated.
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Perturbation equations

Decoupling: The perturbation equations for a given `m mode
decouple from all other modes, and the even-parity sector also
decouples from the odd-parity sector.

Perturbed Einstein tensor

Ġab =
∑
`m

Q`mab Y
`m

ĠaB =
∑
`m

Q`ma Y `m
A +

∑
`m

P `ma X`m
A

ĠAB =
∑
`m

[
Q`m[ ΩABY

`m +Q`m] Y `m
AB

]
+
∑
`m

P `mX`m
AB

Explicit expressions for Q`mab , Q
`m
a , Q`[, Q

`m
] and P `ma , P `m are

provided in the Practicum document.
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Master equation (even-parity)

The perturbation equations can be manipulated in the form of two
master equations for two master variables.

Zerilli equation[
− ∂2

∂t2
+ f

∂

∂r
f
∂

∂r
− Veven(r)

]
Ψeven = Seven

[
Tαβ

]
Ψeven =

2r

`(`+ 1)

[
K +

2f

k

(
fhrr − r∂rK

)]
Veven =

f

k2

[[
(`− 1)(`+ 2)

]2(`(`+ 1)

r2
+

6M

r3

)
+

36M2

r4

(
(`− 1)(`+ 2) +

2M

r

)]
f = 1− 2M/r, k = (`− 1)(`+ 2) + 6M/r
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Zerilli potential
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Master equation (odd parity)

Regge-Wheeler equation[
− ∂2

∂t2
+ f

∂

∂r
f
∂

∂r
− Vodd(r)

]
Ψodd = Sodd

[
Tαβ

]

Ψodd =
2r

(`− 1)(`+ 2)

(
∂rht − ∂thr −

2

r
ht

)
Vodd = f

[
`(`+ 1)

r2
+

6M

r3

]

In principle, all perturbation variables can be reconstructed from
the master functions, Ψeven and Ψodd.
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Gravitational waves

Gravitational-wave polarizations

h+(u) =
1

r

∑
`m

{
Ψ`m

even(u, r =∞)

[
∂2

∂θ2
+

1

2
`(`+ 1)

]
Y `m

−Ψ`m
odd(u, r =∞)

1

sin θ

[
∂

∂θ
− cos θ

sin θ

]
∂

∂φ
Y `m

}
h×(u) =

1

r

∑
`m

{
Ψ`m

odd(u, r =∞)

[
∂2

∂θ2
+

1

2
`(`+ 1)

]
Y `m

+ Ψ`m
even(u, r =∞)

1

sin θ

[
∂

∂θ
− cos θ

sin θ

]
∂

∂φ
Y `m

}
u = t− r∗ = t− r − 2M ln(r/2M − 1) = retarded time

The master functions are therefore especially convenient in the
context of calculating gravitational waves.
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Numerical integration of the master equations

[C.O. Lousto & R.H. Price, Phys. Rev. D 55, 2124 (1997); K. Martel & E. Poisson, Phys. Rev. D 66, 084001

(2002); R. Haas, Phys. Rev. D 75, 124011 (2007)]

Introduce null coordinates u = t− r∗, v = t+ r∗ with
r∗ =

∫
f−1 dr = r + 2M ln(r/2M − 1).

Introduce a uniform discretized grid in u and v.

Then integrate the master equation[
−4

∂2

∂u∂v
− V (r)

]
Ψ = S

S

N

EW cell

u v

over each grid cell, to obtain

−4
[
Ψ(N)−Ψ(E)−Ψ(W ) + Ψ(S)

]
−
∫

cell
VΨ dudv =

∫
cell

S dudv
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Gravitational waves from a particle around a black hole

r/R
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/(
G
M
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Analytical integration of the master equations

Fourier transform: Ψ(t, r) =
∫

Ψ̃(ω, r)e−iωt dω. Then the master
equation becomes an ordinary differential equation.

This can be integrated in terms of a Green’s function constructed
from solutions to the homogeneous equation.

The homogeneous solutions can be obtained with the MST
method, in which Ψ̃ is exanded in a series of hypergeometric
functions for small r, and in Coulomb wave functions for large r.

[S. Mano, H. Susuki, E. Takasugi, Prog. Theor. Phys. 96, 549 (1996); 95, 1079 (1996); 97, 213 (1997)]

The method works best when Mω is small and can be used as an
(additional) expansion parameter.

R. Fujita calculated the gravitational waves from a particle in
circular orbit around a black hole to order (v/c)44 beyond leading
order. [R. Fujita, Prog. Theor. Phys. 128, 971 (2012)]
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Perturbations of the Kerr spacetime

[S.A. Teukolsky, Astrophys. J. 185, 635 (1973); W.H. Press & S.A. Teukolsky 185, 649 (1975); 193, 443 (1974)]

In principle one could linearize the Einstein field equations about
the Kerr metric, and write down a set of perturbation equations.

This approach produces equations that don’t decouple and don’t
allow a separation of variables.

Teukolsky found a way to overcome these problems by working
with curvature variables instead of the metric (Newman-Penrose
formalism).

Eric Poisson Lectures on black-hole perturbation theory
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Kerr spacetime

Kerr metric

ds2 = −
(

1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ

+
ρ2

∆
dr2 + ρ2 dθ2 +

Σ

ρ2
sin2 θ dφ2

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2

Σ = (r2 + a2)2 − a2∆ sin2 θ

Null tetrad

lα =
1

∆

[
r2 + a2,∆, 0, a

]
, nα =

1

2ρ2

[
r2 + a2,−∆, 0, a

]
mα =

1√
2(r + ia cos θ)

[
ia sin θ, 0, 1, i/ sin θ

]
Eric Poisson Lectures on black-hole perturbation theory
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Curvature variables

Newman-Penrose curvature scalars

ψ0 = −Cαµβν lαmµlβmν , ψ1 = −Cαµβν lαnµlβmν

ψ2 = −Cαµβν lαmµm̄βnν , ψ3 = −Cαµβν lαnµm̄βnν

ψ4 = −Cαµβν nαm̄µnβm̄ν

For the unperturbed Kerr spacetime, only ψ2 6= 0.

For a perturbed Kerr spacetime, Teukolsky obtained decoupled
and separable equations for ψ0 and ψ4.

These variables can be related to each other, so only ψ4 is required
in applications.

ψ4 is analogous to the master functions of a perturbed
Schwarzschild spacetime, and its value at r =∞ is simply related
to the gravitational-wave polarizations.
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Integration of the Teukolsky equation

The Teukolksy equation can be integrated numerically.
[S. Drasco & S.A. Hughes, Phys. Rev. D 73, 024027 (2006);

A. Zenginoglu & G. Khanna, Phys. Rev. X 1, 021017 (2011)]

Or it can be integrated analytically using the MST method.
[R. Fujita, Prog. Theor. Exp. Phys. 033E1 (2015)]

There exists a method to reconstruct a metric perturbation from
the Teukolsky variable.
[P.L. Chrzanowski, Phys. Rev. D 11, 2042 (1975); L.S. Kegeles & J.M. Cohen, Phys. Rev. D 19, 1641 (1979);

R.M. Wald, Phys. Rev. Lett. 41, 203 (1978); C.O. Lousto & B.F. Whiting, Phys. Rev. D 66, 024026 (2002);

A. Ori, Phys. Rev. D 64, 124010 (2003); A. Pound, C. Merlin, L. Barack, Phys. Rev. D 89, 024009 (2014)]
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