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Setting and assumptions

We consider a self-gravitating body of mass M and radius R; the body is
spherical when unperturbed.

The body is placed in a tidal potential created by remote bodies; the
length scale of variation is assumed to be long compared with R.

The tidal potential is expressed as a Taylor expansion in powers of xa,
the position relative to the body’s centre of mass,

Utidal = −
∞∑
`=2

1

`!
Ea1a2···a`(t)xa1xa2 · · ·xa`

Ea1a2···a`(t) = −∂a1a2···a`Uremote(t, 0)

The tidal potential varies on an external time scale text ∼
√
r′3/GM ,

where r′ is the inter-body separation, and the time scale for
hydrodynamical processes inside the body is tint ∼

√
R3/GM .

We assume that text � tint, and that the tidal field is weak.

We wish to calculate the tidal deformation of the body.
Eric Poisson Newtonian and relativistic Love numbers



Newtonian tides Relativistic tides References

Governing equations

Poisson’s equation: ∇2U = −4πGρ

Euler’s equation: ρ
dva
dt

= −∂ap+ ρ ∂aU

Continuity equation: ∂tρ+ ∂a(ρv
a) = 0

Equation of state: p = p(ρ)

Unperturbed body (hydrostatic equilibrium)

∇2U = −4πGρ, ∂ap = ρ ∂aU

Perturbed body (hydrostatic equilibrium)

U → U + δU + Utidal, ρ→ ρ+ δρ, p→ p+ δp

∇2δU = −4πGδρ, ∂aδp = δρ ∂aU + ρ ∂a(δU + Utidal)

Eric Poisson Newtonian and relativistic Love numbers



Newtonian tides Relativistic tides References

Expansion in spherical harmonics

Because Ea1a2···a` is a symmetric, tracefree tensor, each term in the tidal
potential is a solid harmonic,

Ea1a2···a` xa1xa2 · · ·xa` =
∑
m

Em` r`Y m` (θ, φ)

So expand all other variables in spherical harmonics,

δU =
∑
`m

Um` (r)Y m` (θ, φ)

δρ =
∑
`m

ρm` (r)Y m` (θ, φ)

δp =
∑
`m

pm` (r)Y m` (θ, φ)
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Reduced equations

The perturbed Poisson equation becomes

r2
d2Um`
dr2

+ 2r
dUm`
dr
− `(`+ 1)Um` = −4πGr2ρm`

The equation of perturbed hydrostatic equilibrium yields

pm` = ρ(Um` + r`Em` )

The equation of state implies that δp = (dp/dρ)δρ, or

ρm` =
dρ

dp
pm`

The end result is a decoupled ODE for Um` .
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Love numbers

The internal solution for Um` is matched to the external solution

Um` =
4πG

2`+ 1

Im`
r`+1

, Im` =

∫
(ρ+ δρ) r` Y m` (θ, φ) dV

This determines the relationship between the multipole moments Im` and
the tidal moments Em` ,

GIm` =
2`+ 1

2π`!
k`R

2`+1 Em`

where k` are the gravitational Love numbers.

Tensorial relation between multipole and tidal moments

GIa1a2···a` = −
2

(2`− 1)!!
k`R

2`+1 Ea1a2···a`

Ia1a2···a` =

∫
(ρ+ δρ)x〈a1xa2 · · ·xa`〉 dV
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Quadrupole deformation

For ` = 2,

GIab = −
2

3
k2R

5 Eab

Iab =

∫
(ρ+ δρ)

(
xaxb − 1

3r
2δab

)
dV

Eab = −∂abUremote

External gravitational potential

U =
GM

r
− 1

2

[
1 + 2k2(R/r)

5
]
Eabxaxb + · · ·
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Polytropes: p = Kρ1+1/n

Quadrupole Love number

n 1/2 1 3/2 2 3
k2 0.449 0.260 0.143 0.0739 0.0144

The Love number is larger for stiffer equations of state.

ρ
/
ρ
c

r/R
Eric Poisson Newtonian and relativistic Love numbers



Newtonian tides Relativistic tides References

Tides in general relativity

The relativistic setting is the same as in the Newtonian discussion.

We continue to consider a self-gravitating body of mass M and radius R
immersed in a tidal environment created by remote bodies.

We continue to assume that the tidal field is weak, and varies on long
spatial and time scales.

The tidally deformed star continues to be in hydrostatic equilibrium.

But there are now two types of tidal fields: gravitoelectric and
gravitomagnetic.

Eαβ = uµuνCαµβν =⇒ Ea1a2···a` =⇒ Em`

Bαβ =
1

2
uµuνεµαγδC

γδ
βν =⇒ Ba1a2···a` =⇒ Bm`
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Governing equations

Einstein’s equation: Gαβ = 8πTαβ

Euler’s equation: (µ+ p)uβ∇βuα = −
(
gαβ + uαuβ

)
∇βp

Continuity equation: ∇α(ρuα) = 0

Equations of state: p = p(ρ), µ = µ(ρ)

Unperturbed body

The body’s structure is determined by the TOV equations.

Perturbed body

gαβ → gαβ + δgαβ , ρ→ ρ+ δρ, uα → uα + δuα

A gauge condition is imposed on the metric perturbation.

All variables are expanded in (tensorial) spherical harmonics.
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Gravitoelectric tides

The field and fluid equations can be manipulated into a decoupled ODE
for hm` (r), defined by δgtt =

∑
`m h

m
` (r)Y m` (θ, φ).

The equation is of the same general form as the Newtonian equation,

r2
d2hm`
dr2

+ 2rV
dhm`
dr

+Whm` = 0

The internal solution is matched to the external solution

hm` =
2

(`− 1)

[
A(r)r` + 2kel` R

2`+1 B(r)

r`+1

]
Em`

A(r) = regular at r = 2M , tends to 1 at r =∞
B(r) = singular at r = 2M , tends to 1 at r =∞

This determines the gravitoelectric Love numbers kel` .
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Gravitomagnetic tides

The field and fluid equations can be manipulated into a decoupled ODE
for jm` (r), defined by δgtθ =

∑
`m j

m
` (r) ∂φY

m
` (θ, φ)/ sin(θ).

The equation is again of the same general form as the Newtonian
equation.

The internal solution is matched to the external solution

jm` =
2

3(`− 1)`

[
C(r)r` − 4

`+ 1

`
kmag
` MR2` D(r)

r`+1

]
Bm`

C(r) = regular at r = 2M , tends to 1 at r =∞
D(r) = singular at r = 2M , tends to 1 at r =∞

This determines the gravitomagnetic Love numbers kmag
` .
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Gravitoelectric Love number: Polytropes
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Gravitoelectric Love number: Realistic equations of state
[Hinderer, Lackey, Lang, Read (2010)]
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Gravitomagnetic Love number: Polytopes

k̃
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Black hole

For a black hole, the metric perturbation must be regular at the horizon.

This requires the elimination of the decaying solutions in hm` and jm` .

Love numbers of a black hole

kel` = 0, kmag
` = 0
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