
Dublin School on Gravitational Wave Source Modelling 2018

Workshop Numerical Relativity

Harald Pfeiffer, Albert-Einstein-Institute

This morning, we discussed various algorithms to solve hyperbolic partial differential
equations. Let’s get our hands dirty and actually code one example to completion.

Your goal is to program a numerical PDE solver for the simplest of hyperbolic equa-
tions, the 1-D advection equation,

∂u

∂t
(x, t) +

∂u

∂x
(x, t) = 0, x ∈ [0, 1], t ≥ 0. (1)

As indicated, we will use the interval x ∈ [0, 1], and to keep things simple, we will use
periodic boundary conditions.

We aim to solve Eq. (1) with three different numerical methods: (1) finite-differences,
(2) pseudo-spectral methods, and (3) discontinuous Galerkin.

If you have never coded before, this is a challenging assignment. In that case, even
“just” getting the finite-differences code to work will be an impressive accomplishment.
On the other hand, if you have a lot of numerical experience, you might find the early
tasks quite easy, and arrive quickly at the more advanced methods. Work at your own
pace. We recommend you work in groups, however, it is educational if everybody in a
group tries to get her/his own code working.

We will use the initial guess

u(x, 0) = e−2 cos(2πx). (2)

This function is periodic, and has more structure than a simple sine-wave1

We recommend that you use Python, as it is very convenient to use, and fast enough
for our 1-dimensional problems. For parts (1) and (2) you can also use another language
of your choice. For part (3), we supply a Python sub-routine to deal with Legendre
polynomials. Without python, you’d be on your own here.

1In fact, a sine-wave sin(2πx) is one of the basis-functions of the pseudo-spectral methodas developed
in (2) below. Therefore the seemingly obvious initial guess of u(x, 0) = sin(2πx) would be represented
exactly by the pseudo-spectral method. The exponential in Eq. (2) levels the playing field, somewhat.

1



1 Finite Differences

Use a uniform grid with N grid-points

xi =
i

N
, i = 0, . . . , N − 1, (3)

i.e. with grid-spacing h = (xmax − xmin)/N = 1/N . The solution is represented by the
values at the grid-points:

u(x, t) ≈ u(xi, t), i = 0, . . . , N − 1. (4)

At fixed time, this will be represented by an array of doubles (in Python, a numpy array)
Discretizing the spatial derivative with central differences, we get

∂u

∂x
(xi, t) =

u(xi+1, t)− u(xi−1, t)

2h
+O(h2). (5)

Ignoring the higher-order corrections O(h2), this is a formula to compute ∂u/∂x. For the
boundary points (i = 0 and i = N − 1), one has to wrap around and use points from the
opposite end of the interval in Eq. (5). This way, you obtain a set of ordinary differential
equations for the values of the solutions at the grid-points:

du(xi, t)

dt
= F [u(xi, t)], (6)

where the right-hand-side F [u(xi, t)] couples the different spatial grid-points with terms
like Eq. (5).

Task FD-1: Write a function that computes the right-hand-side of Eq. (6), i.e.
it takes an array of doubles of length N (representing the grid-point values u(xi)
at time t, and returns an array of length N representing F at the grid-points.
This function will internally index the array u according to Eq. (5). It will also
internally need to accommodate the periodic boundary conditions. Test this function
by feeding it sin(2πx), and check that the result is (approximately) 2π cos(2πx). Also
apply this function to Eq. (2), plot, and ensure by visual inspection that the result
seems right.

Writing the array of variables u(xi) as u, Eq. (6) becomes a vector equation:

du

dt
= F[u]. (7)

This is now a set of ordinary differential equations for the variables u. With this view-
point, called Method of Lines (MOL) we can now employ any method to solve ordinary
differential equations. Let us now develop a few time-steppers so we have building blocks
when we get to the later methods.

2



1.1 Forward Euler

We begin with the simplest possible time-stepper, the Forward-Euler method. We dis-
cretize time,

t→ tk ≡ k∆t, k = 0, 1, ... (8)

We also write the vector of variables at time tk as

uk ≡
(
u(xi, t

k)
)
i=0,...,N−1

. (9)

The Forward-Euler method is now

uk+1 = uk + ∆tF[uk] (10)

Task FD-2: Write a function, called FE Step that performs one step of the Forward-
Euler method. I.e. this function takes an array u representing uk, a time-step ∆t
and a pointer to the function F[u] you coded in Task FD-1. It then returns an
array u that represents the variables one time-step later, i.e. uk+1.

All time-steppers we encounter today are explicit, i.e. the spatial derivatives are only
computed on already known data. Explicit methods are only stable if the time-step is
sufficiently small, roughly,

∆t . consth, (11)

where h is the spatial grid-spacing, and the constant is of order unity (its precise value
depends on the time-stepper and the spatial discretisation method).

Task FD-3: Write a function, called Evolve that calls the single-time-step function
as often as needed, to evolve up to a desired final time Tfinal. This function should
take a ’Courant Factor’ CF, and then automatically choose a step-size satisfying
∆t < CF∆xmin. (This will make convergence tests a lot more convenient). A possible
calling sequence for this function is given just below. Check Evolve with CF = 1/2,
and by evolving to t = 1/10, t = 1/5, etc. Observe whether the solution looks as
expected (i.e. translated by 1/10, 1/5, etc.)

def Evolve(t, T_final, u, F, Tstepper, CF, info):

"""Evolve the evolution equations represented by right-hand-side ’F’

with time-stepper Tstepper until final time ’T_final’.

t - current time

T_final - final time

u - solution at current time ’t’

F - right-hand-side of evolution equations

calling sequence F(t, u, info)

Tstepper - routine that performs one time-step.

3



calling sequence Tstepper(t, u, F, dt, info)

CF - courant-factor; dt will be chosen s.t. dt < CF*dxmin

info - named tuple with extra needed information.

It is assumed that ’info.dxmin’ returns the minimal

grid-spacing. ’info’ is also passed into ’TStepper’,

and ’F’, should those need extra information.

returns

t_final, u_final"""

... work here

return t_final, u_final

info can be conveniently represented as a namedtuple. For example

FD_Info_t=collections.namedtuple(’FD_Info_t’, ’dxmin, x’)

x = np.linspace(0., 1., N, endpoint=False)

info=FD_Info_t(dxmin=1./N, x=x)

print("dxmin={}".format(info.dxmin))

Just plotting data and looking at it is of course not good enough to ensure the code
is correct. The primary means to test for correctness is via a convergence test. As the
resolution is increased (i.e. h→ 0, and ∆t→ 0), the solution should approach a limiting
solution, and it should approach this solution at the correct rate, given the choices of
discretization. The spatial discretization in Eq. (5) is second order accurate.

Task 4: Perform simulations up to t = 1 with Forward-Euler, and confirm that the
error decays as ∝ N−2 and ∝ ∆t. Because the time-convergence of Forward Euler is
so abysmally slow you will have to go to very small time-steps, say Courant factors
CF ∼ 2−1 . . . 2−8. Plot the error vs. N and vs. ∆t

1.2 Better time-steppers

Clearly, Forward Euler is the limitation, so let’s use more quickly converging time-steppers.
Runge-Kutta 2 uses two right-hand-side evaluations, and achieves a time-step error of
O(∆t2)

w1 = F [t,u] (12)

w2 = F [t+ 0.5∆t,uk + 0.5∆tw1] (13)

uk+1 = uk + ∆tw2 (14)

4



Runge-Kutta 4 uses four right-hand-side evaluations, and achieves a time-step error
of O(∆t4)

w1 = F (t,uk) (15)

w2 = F (t+ 0.5∆t,uk + 0.5∆tw1) (16)

w3 = F (t+ 0.5∆t,uk + 0.5∆tw2) (17)

w4 = F (t+ ∆t,uk + ∆tw3) (18)

uk+1 = uk +
∆t

6
(w1 + 2w2 + 2w3 + w4) (19)

Task FD-5: Perform simulations up to t = 1 with Runge-Kutta 2 and Runge-Kutta
4. Plot the error at t = 1 (compared to the analytical solution) vs. time-step for
different choices of N . Confirm that the spatial discretization error decays ∝ N−2.
You will find that for any time-step ∆t for which the methods are stable, the time-
discretization error is already smaller than the spatial discretization error. There-
fore, it is difficult to verify that the time-stepping errors decay as ∝ ∆t2 and ∝ ∆t4,
respectively. You can postpone this to the next section.

Optional Task FD-6: Implement Eq. (5) with higher-order spatial stencils. For
instance, a 5-point stencil that represents ∂u/∂x with an error O(h4).

5



2 Pseudo-spectral collocation methods

The difficulty with finite-differences is the low order accurate spatial differencing stencil.
We could increase the order, but let’s go a different route.

Let’s expand the solution in basis-functions. Because of periodicity, we will use a
Fourier series

u(x, t) ≈
Ñ−1∑
k=0

ãk(t) cos(2πkx) + b̃k(t) sin(2πkx) = Re
Ñ−1∑
k=0

c̃k(t)e
−2π i kx, (20)

where the complex coefficients c̃k = ãk + ib̃k.
As discussed this morning, for smooth, periodic functions a Fourier series converges

exponentially in the number of modes, Ñ . Therefore, the derivative

∂u

∂x
=

Ñ−1∑
k=0

−2πkãk sin(2πkx) + 2πkb̃k cos(2πkx) (21)

will also be exponentially accurate. From Eq. (21), we can read off the spectral coefficients
of the Fourier series of the derivative ∂u/∂x:

ã′k = 2πkb̃k, b̃′k = −2 ikãk, or c̃′k = −2π i kc̃k. (22)

If we can use the expansion Eq. (20), then we know our solution everywhere with high
accuracy (i.e. we can interpolate). We can then also use Eq. (22) to compute derivatives
with high accuracy. If we can use this to evaluate F [u] in Eq. (7), we will have our spatial
discretization error vastly reduced.

It turns out that for a Fourier-series the associated real-space collocation points are
equally spaced:

xj =
j

N
, j = 0, . . . , N − 1. (23)

This is identical to the finite-difference example above (fundamentally, a periodic problem
is translation invariant, and so equal-spacing must be the right choice).

The grid-points xj are also the corresponding grid-points for Gaussian quadrature,
and each grid-point carries the same weight. That means, we can compute the Fourier
coefficients as a sum:

ãk =
1

2

∫ 1

0

u(x) cos(2πkx)dx ≈ 1

2N

∑
j

u(xj) cos(2πkxj) (24)

b̃k =
1

2

∫ 1

0

u(x) sin(2πkx)dx ≈ 1

2N

∑
j

u(xj) sin(2πkxj) (25)

c̃k =
1

2

∫ 1

0

u(x)e2πikxdx ≈ 1

2N

∑
j

u(xj)e
2πikxj =

1

2N

∑
j

u(xj)e
2π i jk/N (26)

6



The factor 1/2 arises, because the average of sin2(x) over a full period is 1/2. Equa-
tion (26) is a discrete Fourier transform, and can be evaluated with built-in functions in
python.

Task PS-1: Read the Python documentation on fast Fourier transforms, and
figure out how precisely you need to call numpy.fft–routines to implement Eq. (26).
This may involve overall scaling, and it may involve complex conjugation to get the
sign-conventions of Eq. (26). Implement a function that takes u and returns the
spectral coefficients c̃k. Test by transforming sin(4πx)− 1/6 cos(8πx) to ensure you
obtain c̃2 = i and c̃4 = −1/6, with the other terms vanishing. Transform also a
constant function, to explore the conventions the FFT-routines use for the k = 0
coefficients (they often differ by a factor of 2, which doesn’t matter, as long as Task
PS-2 works.)

Task PS-2: Evaluating Eq. (20) at the grid-points u(xj) is the inverse transfor-
mation (from spectral to physical space), c̃k → u(xj). Show that this can also be
written as a fast Fourier transform. Work out the convention, and implement as a
function complementing the one of Task PS-1. Test by ensuring that PS-1 followed
by PS-2 returns the original data.

Now we’re almost done computing derivatives with pseudo-spectral methods. Let’s
finish this with

Task PS-3: Implement a function that evaluates the right-hand-side of Eq. (7) as
follows:
(1) transform to spectral coefficients c̃k;
(2) compute the spectral coefficients of the first derivative by Eq. (22)
(3) transform back to real space values (via task PS-2)
Test by computing the right-hand-side for sin(2πx), checking that you obtain
−2π cos(2πx). (the minus sign arises because ∂u/∂t = −∂u/∂x).

Now we’ve got everything we need to apply method-of-lines using a pseudo-spectral
expansion.

7



Task PS-4: Perform simulations using the pseudo-spectral right-hand-side from
Task PS-4. After initial tests, evolve up to Tfinal = 1.02 with Runge-Kutta 4. (do
not use Tfinal = 1!). Compute the difference of u(x, Tfinal) with the analytical solution;
plot its L2-norm vs. time-step for different choices of N . Confirm that the time-
stepping error decays ∝ ∆t4. Confirm that the spatial discretization error decays
exponentially. You will need quite small N to make spatial discretization errors
large enough to be noticable. You will need very small Courant factors to push the
time-discretization error small enough to compete with the spatial discretization
errors. Use N in the 10’s, use CF down to 2−8.

Optional Task PS-5: Why emphasizes Task PS-4 to avoid Tfinal = 1?

8



3 Discontinuous Galerkin

Continuing with the interval [xmin, xmax] = [0, 1], let’s do a discontinuous Galerkin solution
onK elements, each with width h ≡ 1/K. In each elementDk we will employ a polynomial
expansion with the same polynomial expansion order N , for a number of grid-points per
element of Np = N + 1. The total number of grid-points, therefore, is N = KNp =
K (N + 1).

3.1 Lagrange Nodal Basis

In each element, we will use an underlying expansion in Lagrange interpolating polyno-
mials lj(r) based on Legendre-collocation points

ri, i = 0, . . . , N, (27)

with r0 = −1 and rN = 1. Given a set of collocation points rj, the Lagrange interpolating
polynomials are defined to be the unique N-th order polynomials which satisfy

lj(ri) = δij, i, j = 0, . . . , N, (28)

i.e. each lj(r) vanishes at all collocation points, except rj.
Furthermore, as derived this morning, we define the mass-matrix on the reference

element

Mref
ij ≡

∫ 1

−1

li(r)lj(r)dr, (29)

and the stiffness-matrix

Sref
ij ≡

∫ 1

−1

li(r)
dlj(r)

dr
dr. (30)

It turns out that Eqs. (27), (29) and (30) can be computed reasonably easily by exploit-
ing various relations between Legendre polynomials. Details can be found in Hesthaven &
Warburton, Chapters 2 and 3. For expediency, we provide a Python function to compute
these quantities, which can be called as

r, Minv ref, MinvS ref = ReferenceElement(N)

This function returns rj, the inverse Mref−1
, and the matrix Mref−1Sref . It returns

the inverses ofMref , because those are easier to compute, and because those are the ones
actually needed below.

3.2 Actual implementation

Task DG-1: The k-th element Dk covers x ∈ [xk, xk+1]. Derive xk, assuming each
element has the same width. We need a linear mapping from the reference interval
r ∈ [−1, 1] to [xk, xk+1] (where k = 0, . . . , K − 1 numbers the element). Write down
this mapping. Map the reference points rj to the collocation points of the element,
xkj . Then construct a vector of length K(N + 1) containing all grid-points.

9



Task DG-2: The mass-matrix in element Dk is given by

Mk
ij =

∫ xk+1

xk
lki (x)lkj (x)dx, (31)

where the Lagrange interpolating polynomials on the k-th domain lkj (x) are obtained
from the reference lj(r) by the linear transformation x→ r you worked out in task
DG-1. Express Mk in terms of Mref . Similarly, express the stiffness matrix on the
k-th element Sk in terms of Sref .

Now we are in the position to implement the final evolutionary equation for discon-
tinuous Galerkin, as derived in class this morning:

dukh
dt

=−Mk−1Skfkh

+
(
Mk−1

)
iN

(
fkh (xk+1)− f ∗(xk+1)

)
−
(
Mk−1

)
i0

(
fkh (xk)− f ∗(xk)

)
(32)

with flux on the common boundary at xk given by

f ∗(xk) = a{{u}}+ |a|1− α
2

[[u]], (33)

{{u}} =
ukh(x

k) + uk+1
h (xk)

2
, (34)

[[u]] = ukh(x
k)− uk+1

h (xk), (35)

(36)

where furthermore the advection speed a = 1. The parameter α modifies properties of
the flux f ∗, just set α = 1/2.

Task DG-3: in task DG-1, you worked out the vector of all grid-points. This com-
bines all “local” vectors ukh, k = 0, . . . , K − 1, which appear in Eq. (32). Implement
Eq. (32) operating on the vector of all grid-points, (uk(xkj , t), k = 0, . . . , K − 1, j =
0, . . . N − 1). The first line of Eq. (32) operates on each element separately. The
second line couples neighboring elements. To implement periodic boundary condi-
tions, you will have to connect the left side of the first element with the right side
of the last element.
For guidance, for our initial profile Eq. (2), using K = 4, and N = 1, 2, 3, 6, respec-
tively, Harald obtains the following plots.

10



Task DG-4: Use the function from Task DG-3 as right-hand-side in Runge-Kutta
4, and thus solve the advection equation with discontinuous Galerkin. Specifically,
evolve for one light-crossing time (Tfinal = 1) and compute the difference to the
analytic solution. For fixed N , plot the L2-norm of this difference vs the number
K of elements. Repeat for different order N , say up to N = 10, and check whether
you achieve the expected convergence rate err ∼ K−N−1. Because the convergence
order is so high, you will need quite small time-steps to make the Runge-Kutta4 time-
discretization error small enough so that you can observe the spatial discretization
error. Therefore, experiment with different choices for the Courant factor.

11


	Finite Differences
	Forward Euler
	Better time-steppers

	Pseudo-spectral collocation methods
	Discontinuous Galerkin
	Lagrange Nodal Basis
	Actual implementation


