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1. On the effective-one-body Hamiltonian and dynamics

We have considered in class the mapping between the real PN Hamiltonian and the effective Hamilto-
nian. Here we want to construct the effective-one-body (EOB) Hamiltonian using a canonical trans-
formation.

Using reduced (or dimensionless) variables Q,P and Ĥeff , the EOB Hamiltonian reads

Ĥeff(Q,P ) = c2

√
A(Q)

[
1 +

1

c2
P2 +

(
A(Q)

D(Q)
− 1

)
1

c2
(N ·P)2

]
, (1)

where N = Q/Q and

A(Q) = 1 +
a1

c2Q
+

a2

c4Q2
+

a3

c6Q3
+ · · · , (2)

D(Q) = 1 +
d1

c2Q
+

d2

c4Q2
+ · · · , (3)

where ai, di are unknown coefficients that will be determined by the mapping to the (reduced) PN
Hamiltonian

Ĥreal(q, p) = ĤNewt(q, p) +
1

c2
Ĥ1PN(q, p) + · · · , (4)

ĤNewt(q, p) =
1

2
p2 − 1

q
, (5)

Ĥ1PN(q, p) = −1

8
(1− 3ν) p4 − 1

2q
[(3 + ν) p2 + ν(n · p)2] +

1

2q2
, (6)

where q and p are reduced variables, n = q/q and ν = m1m2/(m1 + m2)2, being m1 and m2 the
black-hole masses. At 1PN order the real and effective Hamiltonians are related as

1 +
Ĥreal(q, p)

c2

(
1 + α1

Ĥreal(q, p)

c2

)
=
Ĥeff(Q(q, p), P (q, p))

c2
, (7)

where α1 is an unknown coefficient that will be determined by the mapping.

(a) The canonical transformation at 1PN order is

Qi = qi +
1

c2
∂G1PN

∂pi
, (8)

Pi = pi −
1

c2
∂G1PN

∂qi
, (9)

with

G1PN(q,p) = (q · p)

[
c1p

2 +
c2
q

]
, (10)

where c1, c2 are unknown coefficients that will be determined by the mapping.

Insert the canonical transformation given in Eqs. (8) and (9) in Eq. (7) and expand the latter
in PN orders through 1PN order. By equating terms with the same structures in q, p, derive
the five equations that the five unknown coefficients a1, a2, α1, c1, c2 must satisfy. In the original
paper by Buonanno & Damour (1999), they set a2 = 0 = d1. In this case you should find that
the solutions of the five equations are: α1 = ν/2, c1 = −ν/2 and c2 = 1 + ν/2. [Hint: introduce
the parameter ε2 ≡ 1/c2 and work with the square of Eq. (7), so as to get rid of the square root
in Eq. (1). Use Mathematica to carry out the PN expansion. Note that it is sufficient to derive

Q ≡ |Q| =
√
QiQi, P ≡ |P| =

√
P i Pi and N ·P = N i Pi as function of q ≡ |q|, p ≡ |p| and n ·p

through 1PN order using the canonical transformation given in Eqs. (8) and (9).]
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(b) Extending the previous calculation through 2PN order, Buonanno & Damour (1999) found the
following 2PN coefficients for the effective metric: a3 = 2ν and d2 = −6ν. Use the effective
Hamiltonian at 2PN order to compute the innermost stable circular orbit (ISCO) radius, frequency,
and energy. How do those values compare with the same quantities in Schwarzschild? [Hint: the

ISCO can be computed imposing ∂Ĥeff/(∂Q) = 0 = ∂2Ĥeff/(∂
2Q) for N ·P = 0.]

(c) Introduce polar coordinates (Φ, R ≡ |Q|, PΦ, PR ≡ N · P) and use P2 = P 2
R + P 2

Φ/R
2, with PΦ

the orbital angular momentum. The equations of motion are then

dR

dt̂
=
∂H̃eob

∂PR
,

dPR

dt̂
= −∂H̃eob

∂R
(11)

dΦ

dt̂
=
∂H̃eob

∂PΦ
,

dpΦ

dt̂
= FΦ (12)

where the forcing term can be related to the energy lost by the system as FΦ = 1
Φ̇
dE
dt [(OP-

TIONAL:) Derive this by equating the time derivative of the Hamiltonian with the energy lost.]

One can use the EOB Hamiltonian to approximately include conservative effects of the grav-
itational self-force. Numerically integrate (11) and (12) (using either the leading order post-
Newtonian energy flux to linear order in the mass-ratio, or the energy flux data from black hole
perturbation theory), with

i. The Schwarzschild Hamiltonian (i.e. the ν → 0 limit of the EOB Hamiltonian)

ii. The 2PN EOB Hamiltonian

with the given initial data. Compare the evolution of the orbital phase Φ.

2. Post-Minkowskian scattering and effective-one-body energy mapping

The first post-Minkowskian (1PM) approximation assumes a linear perturbation to flat spacetime,

gµν = ηµν + hµν +O(G2), (13)

where ηµν is the Minkowski metric and hµν is the O(G) metric perturbation, using G as a formal
expansion parameter (but working to all orders in 1/c). This approximation is routinely applied to
describe the propagation of gravitational waves away from a source, in the far zone, but it can also be
applied to the dynamics of the source in the near zone.

For a gravitationally bound system, one has v2 ∼ Gm/r, so that weak fields imply slow motion, and
thus working to all orders in v2/c2 but only to linear order in Gm/rc2 would be (in the strictest sense)
superfluous—–e.g., after re-expanding the 1PM approximation in 1/c, one would obtain the v4/c2 and
Gmv2/rc2 terms in the 1PN Hamiltonian, but one would be missing the G2m2/r2c2 term, which is of
the same order for bound systems.

However, for an unbound system, i.e. in a scattering situation, one can access the regime v2 ∼ c2 �
Gm/r, which is a natural setting for the 1PM approximation.

Let’s consider the scattering of two point-masses in the 1PM approximation (with c = 1 from now on).
Working to linear order in G allows several significant simplifications: To compute the 1PM deflection
of a point-mass, say, body 1, deviating only slightly from inertial (straight-line) motion in a background
Minkowski spacetime, due to its gravitational interaction with a second point-mass, body 2,

(i) body 1 can be taken to follow a geodesic in the linearized field sourced by body 2—–because
corrections to this, from the influence of body 1’s own field, are O(G2)—–,

(ii) the field sourced by body 2 can be computed using its zeroth-order (inertial) motion—–as the
corrections to its O(G) field due to body 2’s own O(G) deflection are also O(G2)—–, and

(iii) the “force” on body 1 can be integrated along its zeroth-order worldline—–because corrections to
the O(G) force due to the O(G) deflection are again O(G2).
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The same logic applies with 1↔ 2.

First consider the zeroth-order state, with G→ 0, in which both bodies move inertially in Minkowski
spacetime. They have constant zeroth-order 4-momenta pµ1 = m1u

µ
1 and pµ2 = m2u

µ
2 , with unit 4-

velocities each satisfying u2 = −1, and rest masses m1 and m2. The bodies’ zeroth-order worldlines
can be parametrized as

xµ = zµ1 (τ1) = zµ10 + uµ1 τ1, (14)

xµ = zµ2 (τ2) = zµ20 + uµ2 τ2, (15)

where we enforce

b · u1 = b · u2 = 0, bµ = zµ10 − z
µ
20, (16)

which uniquely define z10 and z20 as the points of mutual closest approach of the two worldlines,
with the vectorial “impact parameter” bµ, the spacelike separation vector at closest approach, being
orthogonal to both worldlines. The relative Lorentz factor between the worldlines is defined as

γ = −u1 · u2. (17)

We assume that the worldlines are nonparallel and nonintersecting, also requiring that b� Gm1,2 for
the validity of the 1PM approximation.

The metric perturbation h2µν sourced by the zeroth-order motion of body 2 can be taken to be

hµν2 (x) =
2Gm2

r2(x)
(2uµ2u

ν
2 + ηµν), (18)

which is the solution to the harmonic-gauge linearized Einstein equation ∂ρ∂
ρhµν = −16πG(Tµν −

ηµνTρ
ρ/2), ∂µ(hµν−ηµνhρρ/2) = 0 with the point-mass stress-energy tensor Tµν = m

∫
dτ uµuνδ4(x−

z(τ))/
√
−g for body 2, with h→ 0 at infinity. Here,

r2(x) =
√

(x− z20)2 + (u2 · (x− z20))2 (19)

is the distance of the field point x from body 2’s worldline in body 2’s rest frame (as in special relativity).

The linearized geodesic equation for body 1 in the field of body 2 can be written as

du1µ

dτ1
= u1νu

ρ
1Γνµρ[h2] (20)

=
1

2
uν1u

ρ
1∂µh2νρ +O(G2), (21)

where ∂h2 is evaluated at x = z1(τ1).

Using the logic of points (i)–(iii), we can compute the net 1PM deflection of body 1 due to its scattering
encounter with body 2 by inserting (18) into (20) and integrating along the entire zeroth-order worldline
(14):

∆p1µ = m1∆u1µ =
m1

2
uν1u

ρ
1

∫ +∞

−∞
dτ1 ∂µh2νρ(x = z1(τ1)) +O(G2) (22)

= −2Gm1m2

b

2γ2 − 1√
γ2 − 1

b̂µ +O(G2), (23)

where b̂µ = bµ/b and b =
√
bµbµ.

[Note that all index-raising and -lowering, contractions, dot products, squares of vectors, etc. below
can be done with the Minkowski metric.]

(OPTIONAL:) Derive (23) from the preceding equations.
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(a) Use the inherent symmetry under interchanging the bodies’ identities to find ∆p2µ. (Note the
definition of bµ.) Show that the scattering process, pµ1 → pµ1 + ∆pµ1 and pµ2 → pµ2 + ∆pµ2 , conserves
the system’s total 4-momentum

Pµ = pµ1 + pµ2 , (24)

to linear order in G.

The 4-velocity Uµ of the system’s center-of-momentum (COM) frame and the system’s total energy E
in that frame are defined by

Uµ =
Pµ

E
, E =

√
−PµPµ. (25)

The individual momenta can be split into parts along and orthogonal to Uµ according to

pµ1 = m1u
µ
1 = E1U

µ + pµ⊥, (26)

pµ2 = m2u
µ
2 = E2U

µ − pµ⊥, (27)

where E1,2 = −Uµ pµ1,2 are the individual energies, and pµ⊥ is the “relative momentum,” which is a
spacelike vector orthogonal to Uµ.

(b) Show that E, E1, E2, and Uµ are all conserved by the scattering process, to linear order in G.

Thus, ∆pµ⊥ = ∆pµ1 = −∆pµ2 , and

χ =
∆p⊥
p⊥

(28)

gives the angle (in the small angle approximation) in the COM frame by which both bodies are
scattered. Here, p⊥ and ∆p⊥ are the magnitudes of pµ⊥ and ∆pµ⊥.

(c) Express the scattering angle χ in terms of G, m1, m2, γ, and L, where L = bp⊥ is the magnitude
of the system’s total angular momentum in the COM frame.

(d) Express the total energy E in terms of m1, m2 and γ.

We have until now considered the “two-body case,” in which both bodies are deflected by the others’
fields, and have expressed the results in terms of quantities defined in the system’s COM frame.

Now let’s consider the “test-body case,” in which only one body (the “test body”) is dynamical, being
scattered by the second body (the “background body”) which is stationary, and let’s express the results
in terms of quantities defined in the rest frame of the background body.

Say that the test body has mass mt and initial momentum pµt = mtu
µ
t , and the background body has

mass mb and velocity uµb . Using coordinates in which the background body is at rest at the spatial
origin, the test body’s worldline can be parametrized as

xµ = zµt (τt) = bµt + uµt τt, (29)

with

bt · ub = bt · ut = 0, (30)

which defines bµt as the vectorial impact parameter. The Lorentz factor of the test body relative to the
background is defined by

γt = −ub · ut, (31)
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and its initial momentum can be split into parts along and orthogonal to ub according to

pµt = Etu
µ
b + pµt⊥, (32)

where

Et = −ub · pt = mtγt (33)

is the energy of the test body with respect to the background frame, and pµt⊥ is its relative momentum.

(e) The 1PM deflection of the test body, ∆pµt , is given by a direct adaptation of (23), with m1 → mt,
m2 → mb, uµ1 → uµt , u2 → uµb , and bµ → bµt .

[Note the logic of points (i)–(iii), and that the only difference in our description of the two cases
(besides ignoring the deflection of one body in the test-body case) was the reference frames in
which they’re described, but that the result (23) is fully specially covariant. Also note that bµ

would be invariant under the boost relating the COM frame to the rest frame of body 2, since
b · u1 = b · u2 = 0.]

Express the resultant scattering angle in the background frame,

χt =
∆pt

pt⊥
=

∆pt⊥

pt⊥
, (34)

in terms of G, mb, mt, γt and Lt, where Lt = btpt⊥ is the magnitude of the test body’s angular
momentum with respect to the background frame.

(f) The scattering angles χ and χt for the two cases exhibit a 1PM effective-one-body (EOB) corre-
spondence, first pointed out in arXiv:1609.00354, as follows. Let us map the rest masses between
the two cases according to

mb = M = m1 +m2, mt = µ =
m1m2

M
, (35)

which is the mapping of masses from the usual Newtonian EOB mapping. Then, considering the
masses fixed, you should find that

χ(E,L) = χt(Et, Lt) when L = Lt (36)

if there is a certain relationship between E and Et—–note that E and Et can be expressed
respectively solely in terms of γ and γt (and the fixed masses). Express the resultant mapping by
giving Et as a function of E (and M and µ). You should find that the result matches the “EOB
energy map” between the real and effective Hamiltonians from Exercise 1.


