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•Lectures I-II: Basics of gravitational waves

•Lectures III-IV: Motivations and development of effective- 
one-body (EOB) theory (two-body dynamics and waveforms) 

•Lecture V: Using waveform models to infer astrophysical and 
cosmological information of gravitational-wave observations 

•Lecture VI: Using waveform models to probe dynamical gravity  
and extreme matter with gravitational-wave observations

(visualization credit:  Benger @ Airborne Hydro 
Mapping Software & Haas @AEI) 

(NR simulation:  Ossokine,  AB & SXS @AEI) 



•  UMD/AEI graduate course on GW Physics & Astrophysics taught 
in Winter-Spring 2017: http://www.aei.mpg.de/2000472.

References:

•  AB’s Les Houches School Proceedings: arXiv:0709.4682.

•  E.E. Flanagan & S.A. Hughes’ review: arXiv:0501041.

•  M. Maggiore’s books:  “Gravitational Waves Volume 1: Theory and 
Experiments” (2007) & “Gravitational Waves Volume II:  Astrophysics 
and Cosmology” (2018).

•  E. Poisson & C. Will’s book: “Gravity” (2015).

•  AB & B. Sathyaprakash’s review: arXiv:1410.7832.

http://www.aei.mpg.de/2000472
http://arxiv.org/abs/arXiv:0709.4682


Solving two-body problem in General Relativity (including radiation) 
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v2/c2 ~ GM/rc2

•GR is non-linear theory.  

- approximately, but analytically 
(fast way)  

- exactly, but numerically on 
supercomputers (slow way) 

• Einstein’s field equations can 
be solved: 

• Physical (EOBNR) and phenomenological (Phenom) inspiral-merger-ringdown 
waveforms. 

•Synergy between analytical and numerical relativity is crucial.



Solving two-body problem in General Relativity (including radiation) 

•GW151226: SNR=23, 10 cycles 
(from 30 Hz), 0.2 sec.

•GR is non-linear theory.  

- approximately, but analytically 
(fast way)  

- exactly, but numerically on 
supercomputers (slow way) 

• Einstein’s field equations can 
be solved: 

• Physical (EOBNR) and phenomenological (Phenom) inspiral-merger-ringdown 
waveforms. 

•Synergy between analytical and numerical relativity is crucial.

(Abbott et al. PRL 116 (2016) 061102) 



Solving two-body problem in General Relativity (including radiation) 

•GW151226: SNR=13, 55 cycles 
(from 35 Hz), 1 sec.

(Abbott et al. PRL 116 (2016) 241103) 

•GR is non-linear theory.  

- approximately, but analytically 
(fast way)  

- exactly, but numerically on 
supercomputers (slow way) 

• Einstein’s field equations can 
be solved: 

• Physical (EOBNR) and phenomenological (Phenom) inspiral-merger-ringdown 
waveforms. 

•Synergy between analytical and numerical relativity is crucial.



•GW170817: SNR=32, 3000 cycles 
(from 30 Hz), one minute.

last 0.07sec 
modeled by NRlast minutes 

modeled by AR

(Abbott et al. PRL 119 (2017) 161101) 

Solving two-body problem in General Relativity (including radiation) 

•GR is non-linear theory.  

- approximately, but analytically 
(fast way)  

- exactly, but numerically on 
supercomputers (slow way) 

• Einstein’s field equations can 
be solved: 

• Physical (EOBNR) and phenomenological (Phenom) inspiral-merger-ringdown 
waveforms. 

•Synergy between analytical and numerical relativity is crucial.



Post-Newtonian/post-Minkowskian formalism/effective field theory
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•Generation problem and radiation- 
reaction problem.

•Equations of motion of 
compact objects. 

•Physical observables are  
waveforms at null infinity

diverse scales: R, d, 

R R



hµ⌫

Post-Newtonian/post-Minkowskian formalism

R↵� � 1

2
g↵� R =

8⇡G

c4
T↵�

h↵� =
p
�g g↵� � ⌘↵�

Einstein equations can be recast in convenient form introducing:

in weak-field limit it coincides 
with reverse-trace tensor

imposing

depends on non-linear terms 
in        and        , & derivativesgµ⌫

)
no-incoming radiation 
boundary conditions



hµ⌫

Post-Newtonian/post-Minkowskian formalism

R↵� � 1

2
g↵� R =

8⇡G

c4
T↵�

h↵� =
p
�g g↵� � ⌘↵�

Einstein equations can be recast in convenient form introducing:

imposing

depends on non-linear terms 
in        and        , & derivativesgµ⌫

at leading order in G

)

r � d

in weak-field limit it coincides 
with reverse-trace tensor



Far-field quadrupole formula

r � d, r � �GW, �GW � d

Assuming slow motion, and using conservation law of matter energy-
momentum tensor 

@↵T
↵� = 0

In suitable radiative coordinates, in TT gauge: 

Mass-quadrupole moment: 



Einstein quadrupole formula

r � d, r � �GW, �GW � d

Assuming slow motion, and using conservation law of matter energy-
momentum tensor 

@↵T
↵� = 0

In suitable radiative coordinates, in TT gauge: 

Mass-quadrupole moment: 



•Work started in 1917 (Droste & Lorentz 1917, and Einstein, Infeld & Hoffmann 1938)

(Blanchet, Damour, Iyer, Faye, Bernard, Bohe’, AB, Marsat; Jaranowski, Schaefer, Steinhoff;  Will, 
Wiseman; Flanagan, Hinderer, Vines; Goldberger, Porto, Rothstein; Kol, Levi, Smolkin; Foffa, Sturani; …)

+ … + 

m1 m2

+ … 

m1 m2

+ …  

Small parameter is v/c << 1, v2/c2 ~ GM/rc2

•Compact object is point-like body endowed with time-dependent multipole 
moments.

  Equations of motion/Hamiltonian in post-Newtonian theory



Small mass-ratio expansion/gravitational self-force formalism 

•  First works in 50-70s (Regge & Wheeler 56, Zerilli 70,  Teukolsky 72)

(Fujita, Poisson, Sasaki, Shibata, Khanna, Hughes, Bernuzzi, Harms, Nagar…)

m1 m2

•  Accurate modeling of relativistic dynamics of large mass-
ratio inspirals requires to include back-reaction effects due 
to interaction of small object with its own gravitational 
perturbation field.

(Deitweiler, Whiting, Mino, Poisson, Quinn, Wald, Sasaki,  Tanaka, Barack, Ori, Pound, van de Meent, …)

@2 

@t2
� @2 

@r2?
+ V`m = S`m

Equation of gravitational perturbations in black-hole spacetime:

m1

m2

Small parameter is m2/m1 << 1,   v2/c2 ~ GM/rc2 ~1, M = m1 + m2

Green functions in Schwarzschild/Kerr spacetimes.



Numerical Relativity: binary black holes 

• Breakthrough in 2005 (Pretorius 05, Campanelli et al. 06, Baker et al. 06) 

(Kidder, Pfeiffer, Scheel, Lindblom, Szilagyi; Bruegmann; Hannam, Husa, Tichy; Laguna, Shoemaker; …)

• Simulating eXtreme Spacetimes  
(SXS) collaboration

•Numerical-Relativity & Analytical-Relativity collaboration (Hinder et al. 13) 

(Mroue et al. 13) 
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•376 GW cycles, zero spins & mass- 
ratio 7 (8 months, few millions CPU-h) 

(Szilagyi, Blackman, AB, Taracchini et al. 15)



Gravitational waveforms from inspiraling binaries

• GW from time-dependent quadrupole moment: hij ⇠
G

c4
Q̈ij
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E(!)• Center-of-mass energy: • GW luminosity: 
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GW150914: binary composed of two compact objects, no neutron star

•We measured:

• If neutron star were present:

binary would merge at lower frequencies!

M = ⌫3/5M =

✓
5

96
⇡�8/3f�11/3

GW ḟGW

◆3/5

(Abbott et al. PRL 116 (2016) 061102) 

(see also Abbott et al.  Annalen Phys. 529 
(2017) 0209) 
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•We measured:
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• Equal-mass, non-spinning binary



PN (binding) energy versus velocity

• Equal-mass, non-spinning binary (known today through 4PN order)
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Number of GW cycles predicted by PN theory
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Number of GW cycles predicted by PN theory

Nuseful =

R f
max

f
min

w(f)Ninst(f) df/f
R f

max

f
min

w(f) df/f

(Damour, Iyer & Sathyaprakash 03)

w(f) = a2(f)/[fSn(f)] , h(t) = 2a(t) cos 2�(t)
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PN approximants for inspiraling waveforms

(see, e.g.,  AB, Iyer, Ochsner, Pan & Sathyaprakash 2011)



(Boyle et al. 2007)

• Highly-accurate equal-mass, non-spinning 
 binary waveform

Numerical-relativity waveform



M = 20M� ) fGW
0.063 = 98Hz, fGW

0.1 = 161Hz, fGW
ISCO = 220Hz

M = 2.8M� ) fGW
0.063 = 807Hz, fGW

0.1 = 1350Hz, fGW
ISCO = 1570Hz

(Boyle et al. 2007)

Comparing GW phase in NR and PN

• Equal-mass, non-spinning binary



The significance of inspiral, merger & ringdown

(Pan, AB, Baker, Centrella, Kelly, McWilliams & Pretorius 2007)



How far in strong-field regime can we push PN approximation?



Can we get insights on accuracy from PN equations of motion?

(Blanchet et al. 04)



Can we get insights on accuracy from PN equations of motion?



Can we get insights on accuracy from PN equations of motion?



Can we get insights on accuracy from PN equations of motion?



(Davis et al. 1972)

(Barausse, AB et al. 11, see also D
am

our &
 N

agar 07)

• Radial infall

• Quasi-circular 
inspiral

Merger-ringdown waveform in small-mass ratio limit
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On the simplicity of merger signal in small-mass ratio limit

•Peak of black-hole potential close to “light ring”.

•Once particle is inside potential, direct gravitational radiation from 
its motion is strongly filtered by potential barrier (high-pass filter).

•Only black-hole spacetime vibrations (quasi-normal modes) leaks out 
black-hole potential. 

light ring

@2 

@t2
� @2 

@r2?
+ V`m = S`m

black hole horizon

• Equation of gravitational perturbations 
   in black-hole spacetime

(Regge & Wheeler 56, Zerilli 70,  Teukolsky 72)

(Goebel 1972, Davis et al. 1972, Ferrari & Mashhoon 1984)



The effective-one-body (EOB) approach

emission re−written in summed  
conservative dynamics and GW 
emission computed as a Taylor

expansion

PN Theory
conservative dynamics and GW 

Effective one body Numerical relativity

and/or factorized form

two−body dynamics and GW 
emission computed with all

non−linearities

•EOB approach introduced before NR breakthrough

•EOB model uses best information available in PN theory, but resums PN 
terms in suitable way to describe accurately dynamics and radiation during 
inspiral and plunge (going beyond quasi-circular adiabatic motion). 

•EOB assumes comparable-mass description is smooth deformation of test-
particle limit. It employs non-perturbative ingredients and models analytically 
merger-ringdown signal.

(AB, Pan, Taracchini, Barausse, Bohe’, Shao, Hinderer, Steinhoff, Vines; Damour, Nagar, Bernuzzi, 
Bini, Balmelli, Messina; Iyer, Sathyaprakash; Jaranowski, Schaefer)



One-body problem: test-particle orbiting non-spinning BH
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Real description

µν
g eff

Effective description

µ

The effective-one-body approach in a nutshell

• Two-body dynamics is mapped 
into dynamics of one-effective 
body moving in deformed black-
hole spacetime, deformation being 
the mass ratio.

• Some key ideas of EOB model 
were inspired by quantum field 
theory when describing energy of 
comparable-mass charged bodies.

Map 

(AB & Damour 1998 ) 



Finding the energy for comparable-mass binary black holes

•Thinking “quantum mechanically” (à la Wheeler): N & J are classical action 
variables, and are “quantized” in integers. Natural to require that “quantum 
numbers” (N & J) between real and effective descriptions be the same.
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2
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•Real description: 
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•Allow transformation of energy axis:
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(AB & Damour 1998) 
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Energy for comparable-mass bodies

•Classical gravity: (AB & Damour 99)

•Quantum electrodynamics: (Brezin, Itzykson & Zinn-Justin 1970)

•Considering scattering states:

E2
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1 +m2
2 + 2m1m2

✓
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'(s) ⌘ s�m2
1 �m2

2

2m2m2
=

�(p1 + p2)2 �m2
1 �m2

2

2m2m2
= �p1 · p2

m1m2



Hamilton-Jacobi formalism: “real” description

(AB & Damour 1998) 



Hamilton-Jacobi formalism: “effective” description

(AB & Damour 1998) 



(AB & Damour 1998) 

Mapping between energies through canonical transformation

•Mapping between real and effective Hamiltonians can be obtained also 
through canonical transformation.



EOB Hamiltonian: resummed conservative dynamics (@2PN)

•Real Hamiltonian •Effective Hamiltonian

•EOB Hamiltonian:

•Dynamics condensed in Aν(r) and Bν(r)

•Aν(r), which encodes the energetics of circular orbits, is quite simple: 

(credit: Hinderer) 



EOB resummed spin dynamics & waveforms

• EOB equations of motion (AB et al. 00, 05; Damour et al. 09):

• EOB waveforms (AB et al. 00; Damour et al. 09; Pan et al. 11):

(Damour 01, Damour, Jaranowski & Schäfer 08; Damour & Nagar 14)

(Barausse, Racine & AB 09; Barausse & AB 10, 11)

(credit: Hinderer) 

•          extended to include spinsHe↵
⌫



On EOB Hamiltonians with spins

(credit: Hinderer) 

(for a different EOB mapping in presence of spins see Damour 01, Damour, Jaranowski & Schäfer 08; 
Damour & Nagar 14,  Balmelli & Damour 15)

(Barausse, Racine & AB 09; Barausse & AB 10, 11)

•          extended to include spinsHe↵
⌫

Hamiltonian of non-spinning effective 
particle in deformed-Kerr. 

Term linearly proportional to 
spin      of effective particle.     

• Hamiltonian of spinning particle in Kerr (Barausse, Racine & AB 09)

Term added to obtain 
full leading-order terms 
quadratic in spins.
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S⇤ = S1
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+ S2
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�S⇤

SKerr = S1 + S2

• 

(see also Vines et al. 16)

He↵
⌫ = HNS(m1,m2,SKerr) +HS(m1,m2,SKerr,S⇤)�

µ

2M r3
S2
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EOB factorized waveforms with spins

(Damour, Nagar & Iyer 09, Pan, AB, Fujita Racine & Tagoshi 10)

q = a/M• Gravitational modes for particle orbiting Kerr BH



If perturbed, black holes ring or vibrate: quasi-normal modes

light ring

black-hole horizon

@2 

@t2
� @2 

@r2?
+ V`m = 0

(Vishveshwara 70, Press 71, Chandrasekhar et al. 75)

• Equation of gravitational perturbations 
   in black-hole spacetime:

(Regge & Wheeler 56, Zerilli 70,  Teukolsky 72)

RBH = 2GM/c2

M = 20M� ) RBH ⇠ 60 km
• If black-hole’s size is 

and mass                                          
travel time of spacetime vibration 

• For astrophysical black holes (zero charge), 
QNM’s frequency and decay time only 
depend on mass and spin. 

) RBH/c ⇠ 0.2msec.

2M!`mn

�
2⌧

`m
n
/M

Schwarzschild BH

overtones

highly damped 
 modes

• For each (l,m), infinite tower of overtones n.



If perturbed, black holes ring or vibrate: quasi-normal modes

light ring

black-hole horizon

@2 

@t2
� @2 

@r2?
+ V`m = 0

(Vishveshwara 70, Press 71, Chandrasekhar et al. 75)

• Equation of gravitational perturbations 
   in black-hole spacetime:

(Regge & Wheeler 56, Zerilli 70,  Teukolsky 72)

2M!`mn

�
2⌧

`m
n
/M

Schwarzschild BH

overtones

highly damped 
 modes• For Schwarzschild BH of                   :

f2m0 = 604Hz, ⌧2m0 = 1.10msec

f2m1 = 560Hz, ⌧2m1 = 0.36msec

f2m2 = 486Hz, ⌧2m2 = 0.20msec

M = 20M� )
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In 2005, NR breakthrough found
0.68 for equal-mass binary merger.
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(t) = Ae�(t�tmatch)/⌧QNM

cos[!QNM(t� tmatch) +B]



On the full effective-one-body waveforms

• Evolve two-body dynamics up to light ring (or photon orbit) and then …

•Quasi-normal modes excited at light-ring crossing

(Goebel 1972, Davis et al. 1972, Ferrari et al. 1984, Damour et al. 07, Barausse et al. 11,  Price et al. 15)
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… attach superposition of quasi-normal modes of remnant black hole.
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On the full effective-one-body waveforms (contd.)
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(AB, Cook & Pretorius 07) 

The (plunge and) merger in first NR simulations

• Very short/simple transition 
plunge-merger-ringdown

• Energy quickly released 
during merger: 2%-12%M



(AB, Cook & Pretorius 07) 

First comparison/calibration between NR and EOB model
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•Uncalibrated EOB waveform 
at 3.5PN order

(AB, Pan, Baker, Centrella, Kelly at al. 08) 

•Calibrated EOBNR waveform 

• EOBNRv1 waveforms used in iLIGO BBH searches 



First calibration between NR and EOB model

(AB, Pan, Baker, Centrella, Kelly at al. 08) 

•Calibrated EOBNR waveforms 

• EOBNRv1 waveforms used in iLIGO BBH searches 



BBH searches in initial LIGO (S5 & S6 runs)

(Abadie et al. PRD83 (2011) 122005,  
Abadie et al. PRD87 (2013)  022002 ) 

•First upper limits from iLIGO



Calibration of EOBNR for O1 & O2 searches/follow-up analyses
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mass ratio = 1 and spins |S1|/m2
1 = 0.98, |S2|/m2

2 = 0.98 

(Pan,  AB et al. 13,  Taracchini, AB, Pan, 
Hinderer & SXS 14, Puerrer 15)

141 SXS simulations
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Completing EOB waveforms using NR/perturbation theory information
(credit: Taracchini)
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•  We calibrate to 
merger-ringdown
Teukolsky-
equation based 
waveforms.

(credit: Taracchini)
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Calibration + NQC corrections

•  We calibrate to 
inspiral-merger-
ringdown NR 
waveforms.



Completing EOB waveforms using NR/perturbation theory information

(Damour et al. 07-09,  AB et al. 09, Pan et al. 09, Bernuzzi et al. 11, Pan et al. 11)



Calibrating EOB to Teukolsky-equation—based waveforms

•Retrograde orbit:  BH spin = -0.5

• Solving Teukolsky equation for perturbations in Kerr spacetime

(Taracchini, AB, Khanna & Hughes 13, Barausse, AB, 
Hughes & Khanna 11)
(see also Damour & Nagar 07,  Bernuzzi et al. 10, 
11, Harms et al. 14, 16)



Finite mass-ratio effects make gravitational interaction less attractive
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Strong-field effects in binary black holes included in EOB

(Taracchini, AB, Pan, Hinderer & SXS 14)



Comparing uncalibrated EOB to ultralong NR waveform

(Szilagyi, Blackman, AB, Taracchini et al. 15)



Comparing NR, PN & EOB beyond waveforms
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NR starts 22 orbits before merger

NR starts 12 orbits before merger
• Periastron advance

(Hinderer et al. 13, Le Tiec et al. 11, 13) 

•Energy/angular momentum

•Scattering angle of hyperbolic 
encounters 

(Damour et al. 11, Le Tiec et al. 11, 
Ossokine, Dietrich et al. 17) 

(Damour et al. 14) 



Comparing the energetics of NR against PN

(Ossokine, Dietrich et al. 17) x = (M⌦)1/3

toward merger

non-spinning BHs



Comparing the energetics of NR against EOB & EOBNR

(Ossokine, Dietrich et al. 17) 
x = (M⌦)1/3

toward merger

non-spinning BHs

toward merger



Eccentric waveform models

•EOB dynamics & waveform extended to any eccentricity value for 
nonspinning binaries.

1800 2000 2200 2400 2600
(t � R)/M

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

(D
L
/M

)<
(h

22
)

e0 = 0.4, p0 = 13M, q = 4

10800 11000 11200 11400 11600 11800
(t � R)/M

�0.4

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

0.4
(D

L
/M

)<
(h

22
)

e0 = 0.3, p0 = 20M, q = 1

(Hinderer & Babak 17)

(for eccentricity modeling see also Huerta et al. 14, 16; Hinder et al. 17; Loutrel & Yunes 16, 17)

•Binary's degrees of freedom are divided into a set of phase variables, 
and a set of quantities that are constant in the absence of radiation 
reaction.


