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o | ectures I-ll: Basics of gravitational waves

o Lectures llI-1V: Motivations and development of effective-
one-body (EOB) theory (two-body dynamics and waveforms)

e Lecture V: Using waveform models to infer astrophysical and
cosmological information of gravitational-wave observations

e Lecture VI: Using waveform models to probe dynamical gravity
and extreme matter with gravitational-wave observations
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Einstein equations and notations

¢ Einstein-Hilbert action:
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partial derivative denoted also with colon
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Matter actlon/energy momentum covariant derivative denoted with semicolon

tensor:
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Einstein equations and notations (contd.)

e Curvature tensor:
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¢ Affine connection:
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e Ricci tensor and scalar:

Ry = 9" Rppov R =g"" R,

e Bianchi identity:
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Einstein equations and notations (contd.)

* Varying total action with respect to G,

G = Ry —

1
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(Einstein 1915)

Non-linear equations with well posed initial value structure, i.e., they

determine future values of Juv from given initial values.

(Choquet-Bruhat 1952)

Ten differential equations, using symmetry of tensors R, ,1},,.

Using Bianchi’s identity, we have six differential equations.

e GR invariant under coordinate transformations
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Gravitational waves: signature of dynamical spacetime

*In 1916 Einstein predicted existence of gravitational waves:

Linearized gravity (weak field): Guv — NMuv + huy |h“u| <1
1 8mG — 167G
R“y — EQMVR — C—4TMV _> h‘“/ — C4 T[.LI/

e Distribution of mass deforms spacetime geometry in its neighborhood.
Deformations propagate away at speed of light in form of waves whose
oscillations reflect temporal variation of matter distribution.

X Polarization

y y

Two radiative degrees of freedom

(visualization: Dietrich @ AEI)
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First paper by Einstein on gravitational waves: 1916

Approximative Integration of the Field Equations of Gravitation
by A. Einstein

For the treatment of the special (not basic) problems in gravitational theory one can
be satisfied with a first approximation of the g , . The same reasons as in the special
theory of relativity make it advantageous to use the imaginary time variable x, = ir.
By “first approximation” we mean that the quantities y,,, defined by the equation
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This expression would get an additional factor 1 if we would measure time in

Y . F——

seconds and energy in Erg. Considering furthermore that x = 1.87 - 107, it is

obvious that A has, in all imaginable cases, a practically vanishing value.
Nevertheless, due to the inneratomic movement of electrons, atoms would have
to radiate not only electromagnetic but also gravitational energy, if only in tiny

amounts. As this is hardly true in nature, it appears that quantum theory would have

to modify not only MAXWELLIAN electrodynamics, but also the new theory of
|__gravitation.




Second paper by Einstein on gravitational waves: 1918

The important question of how gravitational fields propagate was treated by me in

an academy paper one and a half years ago.” However, | have to return to the sub-

ject matter since my former presentation is not sufficiently transparent and, further-
more, 1s marred by a regrettable error in calculation.

If one forms the mean value of § over all directions of space for a fixed value of

A, .~ One obtains the mean density S of the radiation. Finally, S multiplied by

4mR? is the energy loss (per time unit) of the mechanical system due to gravita-
tional waves. The calculation finds

it - K [oR?2 1( 2 )
4R’S = 801:[23“"—3 T3, } (30)
i

wrong by a factor 2! / -

This result shows that a mechanical system which permanently retains spherical
symmetry cannot radiate; this is in contrast (o the result of the previous paper,
marred by an error in calculation.




Linearization of Einstein equations

e We assume there is a coordinate frame such that:

Juv = Nuw + Ny | <1

e By choosing particular frame we broke invariance under coordinate
transformations, however, residual gauge symmetry remains:

at — o't =2t 4 (x)), 0u&u| < |

g:w — Ny — ai/fu — aufv h,uu 0(862)

h:JJV — h/:uV o sluay o SV,ILL g:LV — 77,UfV _I_ h’;y7 |h;y‘ << 1

e N, tensor under Poincare’ group.



Linearization of Einstein equations (contd.)

e At linear order in h,uu

R, = 0,I, — 9, + O(h?)
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¢ Linearized Riemann tensor is invariant under h/w = hpyy —Euw — &

e Trace-reverse tensor:
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Linearization of Einstein equations (contd.)

* Linearized Einstein equations:

Ez/a Nvo 0" 5>‘Ep>\—8p 6,/5}00—8'0 805/0,, O(h2) —
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e Imposing Lorenz gauge (harmonic gauge):

o,h" =0
160G

hvo = ——4— Tvo 9, TH = 0

* 6 independent components, 2 physical radiative degrees of freedom,
4 physical non-radiative degrees of freedom. (Flanagan & Hughes 05)



Lorenz gauge can always be imposed

xh = axt + EF(x) with € an arbitrary and infinitesimal vector field

new __

g,uz/ — Guv — g,u,l/ T fl/,,u

1, UV 1, LV v AUV v
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o £ exists for any well behaved h*¥

e £/ is not unique, we can always add to it ¢* such that Og* = 0




Propagation of GW in vacuum (far from source)

(V2 ! 82) WY =0 with  9,h* = 0

c2 Ot?
e Plane wave solution:
hHY = AG“V(k) etha =% \yith k, et =0 " — polarization tensor
e General solution:

P = Re | [ d®k Ay (k) €2 | with k# = (w, F) and k# A, = 0

Using the freedom within Lorenz gauge = we can determine
the only physical radiative components in A" = hf..



Imposing transverse-traceless gauge

E/W =0 8,,5/“/ =0 (GWs propagate at speed of light)

e Within Lorenz gauge, we can consider transformations such that

‘gu =0
W = huw + € Euv = Muv 0p8” — Euw — &u,u

* Using O¢, = 0 we can subtract 4 of the 6 components of /1,

e We choose 50 such that , = (), and §"' such that A0 = (, then

from Lorenz gauge, we have 9 h%° = (), and being GWs time-dependent,
we have R%0 — 0.

R =0, A =0, O;p¥Y =0, A" =0




Imposing transverse-traceless gauge (contd.)

1 1, T'T __
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* Assuming plane wave propagates along z-axis:

h_|_ hx O - A
h;-I;-T(t, z)=\||hx —hy| O | cos|w (t— —)
0 0 O - ©7-

plus and cross polarizations

* Along generic direction of propagation:

Pz(n) — (Sij — N3 Ty
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1 TT
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Linearly polarized waves in EM & GR

e In EM theory linearly polarized vectors are:

e, and e,

e In GW theory linearly polarized tensors are:

e =€; X €, — €, Xe, and ex =€, X e, +e, Xe,
(uxv)(Aq)=(A-u)(q-Vv)
[0 0 0 0) [0 0 0 0)
o1 o o o o0 1 0
“*~1 0 0 -1 o0 =10 1 0 0
\ o 0o o0 o) \ 0 0 0 0 )




Circularly polarized waves in EM & GR

e In EM theory circularly polarized vectors are:

eR = %(ex + 1€e,) and ey = %(ex —1€,)

e In GW theory circularly polarized tensors are:

1 : 1 :
erp = —=(e C n e, = —=(eL — e
R \/§(+ iex) and L \/§(+ iex)
/0 0 0 0 0 0 0 O
. _| o1 o o0 . _| 0010
71 0 0 -1 0 “~“ 1 o 1 0 0
\ 0 0 0 © 0 0 0 O



Gravitational waves have helicity 2

Any plane wave ) which is transformed by a rotation of any angle
# around the direction of propagation into ¢/’ = e'"?4) is said to
have helicity

Let us rotate the coordinate system around z by ¢

x' = x cosf + y sinf y' =y cosf — x sinf

e, = e, cost + e, sinb e, = —e, sinb + e, cosl

e r =e, cos20+ ey sin2b ey = —e, sin 20 + ey cos 20



Newtonian description of tidal gravity

e [wo point particles A and B falling freely under

A g, B
the action of external Newtonian potential ¢ t=0p . =et=0
t'tlf 1 >f t=t,
e A and B at time t = 0 are separated by small  ¢=¢, 52 (=1

distance £ and have equal velocity va(0) = vg(0) ] | Zy

e For ¢ > 0, A and B experience slightly different

gravitational potential and accelerations g = — V&
; ; ; ; ¥ ¥ Assuming |¢| is much smaller than typical
f — X A X B f — X A X B lscale of variation of gravitational potential
Y Sy S oD oD - 7
f — LA T IR T (8xi)B T (8a:i)A o (&UZ Oxﬂ) f
o ( 92 d N : 4l L |
€5 = 5.75.7) — Newtonian tidal gravitationa leld



Equation of geodesic deviation

Pair of nearby freely-falling particles A and

traveling on trajectories x*(7) and x#(7) -

Assuming |£#] is much smaller than typical

scale of variation of gravitational field

_ d2yH uw daxb dz™
— dr2 +FI/)\ dr dr A

2 L M L M A
O_d(x‘—l—/) | FI,L/L (x_i_é)d(x‘-l—/)d(azdi-s)

Taking the difference and limiting to first order in &

VuVut =R, U0 U =G

dr
A % A % A A O dSA
VUg =U vl/g =U (al/‘g= =+ Fuag ) —

dx”
| F)x o
dT ve dT



Interaction of GWs with free-falling particles in local Lorentz frame

e [wo test particles A and B initially at rest one respect
to the other in absence of GWs ¢

e Local Lorentz frame attached to particle A, with spatial

origin at 27 = 0 and coordinate time equal to proper time
0
xr =t

e By definition of LLF, the metric g,,, of a LLF observer

reduces to Minkowski metric at the origin and all its

first derivatives must vanish at the origin
2
ds? = —dt? + dx? + O (5)

R being the curvature radius:  R™% = |R,, 0]



Geodesic deviation equation in local-Lorentz frame (LLF)

. -\ dx¥ dxP
VU VU& Rz/)\p dt dt

t
Vo Vu & =UPV(UAVAEY) = UPUMVE(E7, +T5,£7)

In the LLF of particle A:
[7,=0 = VyVu&=UPUME", ,+T%,557)

U =068 = VyVpl® =£E+T8, 067

o~ O ('X'z) oV, Vp o =éo

| 2¢7 ‘ .
Assuming ' =0 = % -RJO,L-()&Z

Curvature tensor in linearized
gravity invariant. In TT gauge:

1 i TT ¢’ 1 i TT

Rg()zo_ 9 'Y a2 9



Interaction of GWs with free-falling particles using TT gauge

e [wo test particles A and B initially at rest one respect
to the other in absence of GWs tA

o U“ being the 4-velocity of particle A

dU% | To RV =
A N
Fgl/ (h[j’u y T hl/[3 1L h,ul/ [3) / \\\\
o Initially U® = 58 = . g

dU®
T —I'go = _%(hog 0T hao 0 hoo /3> = 0!

Coordinate position of test particles does not vary. Proper distance varies.



On geodesic deviation equation in LLF

If 2 and g"" refer to TT gauge (h1?!

[0 0 0 0
0 At 0 0

—V __
g =Mw T g o _pTT g

\O 0 0 O/

The local Lorentz metric g,,,, should reduce to Minkowski metric
at the origin and all its first derivatives must vanish

t=t—h'" (2 —y?) /4 [ P(t) 0 0 (1) \
:Z'::z:—hTTa:/Q 9" = nu — 2 0 00 0
g=y+h'y/2 \ <b(()t) 8 8 <I>(()t) )
z=z+htl (2?2 —y?)/4
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On geodesic deviation equation in LLF (contd.)

i Ox' 9z ozt ozP pTT TT 17TT
070 — Ozt 929 927 OV R 1/)\,0 ~ R 030 = RO]O h ( )

d2¢7

G =Rt =3h5TE0) = & =5hiTE(0)

e The acceleration of particle B in the LLF of particle A is: a/ = o1 hTTf (0)

mp

e [ he observer in LLF of particle A concludes that particle B is subjected
to the force F', whereas for an observer in LLF of particle B, particle B
s just free falling

In GW interferometers: A — mirror at beam splitter; B — mirror at end of arm cavity

5
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¢
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—h K L~3km h~10"21 = §¢~ 10~6cm!
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On geodesic deviation equation in LLF (contd.)

The LLF is useful to do calculations as long as we can use the metric in the

2 : : :
form g, = 1, + O (%) i.e., as long as we can disregard x? corrections

GW

2 2 .
L~ <l if L<Agw
GW

e Ground-based detectors (LIGO, VIRGO,KAGRA,GEO): L < A\gw ~ 10° km

e Space-based detectors (LISA): L ~ Agw ~ 5 x 10° km



Equivalence between TT frame and local Lorentz frame

Proper distance in the two frames (assume that A and B are along z-axis and only h # 0)

o LLF:
(AS)? = gz (Az)?
gz =1 but (Az)? = (L+ shy L)?
= As =L (1+ 3hy)
o TTF:
(AS)? = gzg (Az)?
grx = 1+ hy but (A;,;)Q _ 12
= As =L (1+%h+)

Proper distances are the same!



GWs and ring of free-falling particles

Interaction between GW and ring of free-falling particles: hi'

GW propagating along z-axis
N A TT — ;' TT TT TT — , I'T __
Case: h, . = —hyy =h_ " #0 h. h =hy" =0

55113 — %hg:;zr 558( )

_%hyy fy(O)
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GWs and ring of free-falling particles (contd.)

Interaction between GW and ring of free-falling particles: h.*'

GW propagating along z-axis

Case: hgg = —hgz;r = h;r_T = 0 hTT hTT = hTT + 0

0&e = +5hy, &(0)

OO0

T~
= - \\/

C 1 TT
0&, thy




GWs and lines of force

Lines of force for hi' and hl'
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The two LIGO detectors & the Virgo detector

LIGO in Hanford, WA

Laser
Source

AL=Lh~ 10" cm
L=4km = h ~ 107!

(Abbott et al. PRL 116 (2016) 061102)
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LIGO/Virgo measure (tiny) relative changes
in separation of mirrors (phase shifts of
light at beamsplitter of 10-? rad!)



How LIGO/Virgo work

LIGO Scientific Collaboration




A glimpse inside the LIGO facility




Typical noises in ground-based gravitational-wave detectors

INITIAL INTERFEROMETER SENSITIVITY
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Evolution of sensitivity from Enhanced to Advanced LIGO (O1)
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(Martynov et al. arXiv:1604.00439)


http://arxiv.org/abs/arXiv:1604.00439

Advanced Virgo joined Advanced LIGOs on August |, 2017

(Abbott et al. arXiv:1709.09660)
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