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•Lectures I-II: Basics of gravitational waves

•Lectures III-IV: Motivations and development of effective- 
one-body (EOB) theory (two-body dynamics and waveforms) 

•Lecture V: Using waveform models to infer astrophysical and 
cosmological information of gravitational-wave observations 

•Lecture VI: Using waveform models to probe dynamical gravity  
and extreme matter with gravitational-wave observations

(visualization credit:  Benger @ Airborne Hydro 
Mapping Software & Haas @AEI) 

(NR simulation:  Ossokine,  AB & SXS @AEI) 



•  UMD/AEI graduate course on GW Physics & Astrophysics taught 
in Winter-Spring 2017: http://www.aei.mpg.de/2000472.
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•  E.E. Flanagan & S.A. Hughes’ review: arXiv:0501041.

•  M. Maggiore’s books:  “Gravitational Waves Volume 1: Theory and 
Experiments” (2007) & “Gravitational Waves Volume II:  Astrophysics 
and Cosmology” (2018).

•  E. Poisson & C. Will’s book: “Gravity” (2015).

•  AB & B. Sathyaprakash’s review: arXiv:1410.7832.
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Einstein equations and notations 
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•Einstein-Hilbert action:

•Matter action/energy-momentum 
tensor:

covariant derivative denoted with semicolon
partial derivative denoted also with colon
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Einstein equations and notations (contd.)
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•Curvature tensor:

•Affine connection:

•Ricci tensor and scalar:

•Bianchi identity:



Einstein equations and notations (contd.)

•Varying total action with respect to gµ⌫

Gµ⌫ = Rµ⌫ � 1
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Non-linear equations with well posed initial value structure, i.e., they 
determine future values of         from given initial values. gµ⌫

Ten differential equations, using symmetry of tensors                 .

Using Bianchi’s identity, we have six differential equations.            

•GR invariant under coordinate transformations x
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(Choquet-Bruhat 1952)

(Einstein 1915)



•Distribution of mass deforms spacetime geometry in its neighborhood.  
Deformations propagate away at speed of light in form of waves whose 
oscillations reflect temporal variation of matter distribution.

• In 1916 Einstein predicted existence of gravitational waves:

Linearized gravity (weak field):

Ripples in the curvature of spacetime

Two radiative degrees of freedom

Gravitational waves: signature of dynamical spacetime
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First paper by Einstein on gravitational waves: 1916



Second paper by Einstein on gravitational waves: 1918

wrong by a factor 2!



 Linearization of Einstein equations 

• We assume there is a coordinate frame such that:

gµ⌫ = ⌘µ⌫ + hµ⌫ , |hµ⌫ | ⌧ 1
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• By choosing particular frame we broke invariance under coordinate 
transformations, however, residual gauge symmetry remains:

•          tensor under Poincare’ group.hµ⌫



 Linearization of Einstein equations (contd.)

• At linear order in hµ⌫

• Linearized Riemann tensor is invariant under h0
µ⌫ = hµ⌫ � ⇠µ,⌫ � ⇠⌫,µ

• Trace-reverse tensor:



 Linearization of Einstein equations (contd.)

• Imposing Lorenz gauge (harmonic gauge):

• Linearized Einstein equations:

• 6 independent components, 2 physical radiative degrees of freedom,  
4 physical non-radiative degrees of freedom. (Flanagan & Hughes 05)



 Lorenz gauge can always be imposed



 Propagation of GW in vacuum (far from source)



 Imposing transverse-traceless gauge 

 (GWs propagate at speed of light)

• Within Lorenz gauge, we can consider transformations such that

•  Using                 we can subtract 4 of the 6 components of hµ⌫

• We choose      such that            , and      such that               , then 

from Lorenz gauge, we have                  , and being GWs time-dependent, 
we have            .



 Imposing transverse-traceless gauge (contd.)

• Assuming plane wave propagates along z-axis:

• Along generic direction of propagation:
plus and cross polarizations

,



 Linearly polarized waves in EM & GR



 Circularly polarized waves in EM & GR



 Gravitational waves have helicity 2



 Newtonian description of tidal gravity

Assuming |⇠i| is much smaller than typical

scale of variation of gravitational potential



 Equation of geodesic deviation

Assuming |⇠µ| is much smaller than typical

scale of variation of gravitational field
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Interaction of GWs with free-falling particles in local Lorentz frame



Geodesic deviation equation in local-Lorentz frame (LLF)

Curvature tensor in linearized 
 gravity invariant. In TT gauge: RTT
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Interaction of GWs with free-falling particles using TT gauge 

Coordinate position of test particles does not vary. Proper distance varies.



On geodesic deviation equation in LLF
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On geodesic deviation equation in LLF (contd.)



KAGRA,

On geodesic deviation equation in LLF (contd.)



Equivalence between TT frame and local Lorentz frame



GWs and ring of free-falling particles



GWs and ring of free-falling particles (contd.)



GWs and lines of force
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(Abbott et al. PRL 116 (2016) 061102) 

The two LIGO detectors & the Virgo detector 

LIGO/Virgo measure (tiny) relative changes
in separation of mirrors (phase shifts of 
light at beamsplitter of 10-9 rad!)

LIGO in Hanford,  WA

Virgo in Pisa, Italy



How LIGO/Virgo work

LIGO Scientific Collaboration 



A glimpse inside the LIGO facility 

LIGO Scientific Collaboration 



Typical noises in ground-based gravitational-wave detectors 



Evolution of sensitivity from Enhanced to Advanced LIGO (O1)

(Martynov et al. arXiv:1604.00439) 

http://arxiv.org/abs/arXiv:1604.00439


Advanced Virgo joined Advanced LIGOs on August 1, 2017
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(Abbott et al. arXiv:1709.09660) 

http://arxiv.org/abs/arXiv:1709.09660

