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Abstract
Existence and uniqueness of complex geodesics joining two points of a convex bounded
domain in a Banach space X are considered. Existence is proved for the unit ball of X under
the assumption that X is 1-complemented in its double dual. Another existence result for
taut domains is also proved. Uniqueness is proved for strictly convex bounded domains in
spaces with the analytic Radon-Nikodym property. If the unit ball of X has a modulus of
complex uniform convexity with power type decay at 0, then all complex geodesics in the
unit ball satisfy a Lipschitz condition. The results are applied to classical Banach spaces and
to give a formula describing all complex geodesics in the unit ball of the sequence spaces `p

(1 ≤ p <∞).

In this article, we discuss the existence, uniqueness and continuity of complex geodesics
on a convex domain D in a complex Banach space X . The term ‘complex geodesic’ is due
to Vesentini [33], although the concept was discussed by Carathéodory [5] and Reiffen [27]
under the name ‘metric plane’. Recent results on this topic are to be found in [11, 14,
15, 16, 34, 35, 36, 37]. Applications of complex geodesics to the study of biholomorphic
automorphisms and to fixed point sets are to be found in [5, 33, 34, 35, 36, 37].

Our results on the existence problem depend on topological properties of the Banach
space X , the results on uniqueness depend on the geometry of the boundary ∂D and on an
analytic-geometric property of X (the analytic Radon-Nikodym property), while the conti-
nuity (i.e. continuous extensions to the boundary) is obtained using complex uniform con-
vexity.

In section 1, we introduce complex geodesics and related concepts and prove some basic
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results. In section 2, we show that every pair of points in the unit ball BX of X can be
joined by a complex geodesic provided X is 1-complemented in its double dual X∗∗. In
proving this we show that the canonical embedding of BX in BX∗∗ is an isometry for the
Kobayashi metrics. We also obtain a new simple proof of a result of Davie and Gamelin [7]
that bounded analytic functions on BX extend to BX∗∗ . In section 3, we use the analytic
Radon-Nikodym property and extreme points to obtain uniqueness results and in Section 4
we prove continuity properties of complex geodesics. In Section 5 we apply the results of
the preceding three sections to `p and related spaces.

An examination of the methods of section 2 shows that topological considerations are
only used to obtain ‘Montel type’ theorems for mappings defined on the unit disc in C with
values in the domain D ⊂ X under consideration. This led us to consider (in an infinite-
dimensional setting) the concepts of taut and complete hyperbolic domains (section 6). In
section 6, we also apply our results to show that certain domains have constant negative
curvature in the Kobayashi metric.

A number of the results in this paper were announced in [10]. We refer to [10] for
background results and further details on complex geodesics.

1 COMPLEX GEODESICS
D is the open unit disc in C and ρ will denote the Poincaré distance on D, i.e.

ρ(z, w) = tanh−1

(∣∣∣∣ z − w

1− w̄z

∣∣∣∣) (z, w ∈ D).

The infinitesimal Poincaré distance α is defined by α(z, v) = |v|/(1 − |z|2) (for v ∈ C and
z ∈ D).

For D1 and D2 domains in complex Banach spaces, H(D1,D2) denotes the set of all
D2-valued holomorphic functions on D1. For a domain D in a complex Banach space X ,
p, q ∈ D and v ∈ V ,

CD(p, q) = sup{ρ(f(p), f(q)) : f ∈ H(D,D)}
cD(p, v) = sup{|f ′(p)(v)|) : f ∈ H(D,D)}
δD(p, q) = inf{ρ(u, v) : ∃f ∈ H(D,D), f(u) = p, f(v) = q}

KD(p, q) = inf

{
n∑

i=1

δD(wi−1, wi) : n ≥ 1, p = w0, w1, . . . , wn = q ∈ D

}
kD(p, v) = inf{η > 0 : ∃f ∈ H(D,D), f(0) = p, f ′(0)η = v}.

CD is called the Carathéodory distance on D, KD the Kobayashi distance and cD and kD are
the corresponding infinitesimal metrics.
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For the unit disc, CD = KD = ρ and cD = kD = α. In general CD ≤ KD ≤ δD. Unlike
CD and KD, δD does not obey the triangle inequality in general. KD is the largest distance
function on D smaller than δD. Holomorphic mappings are contractions relative to any one
of the above distances or infinitesimal metrics.

Definition 1.1 Let D be a domain in a complex Banach space X and let d be a distance on
D. A mapping φ ∈ H(D,D) is called a complex d-geodesic if

ρ(u, v) = d(φ(u), φ(v)) for u, v ∈ D.

If z, w ∈ φ(D) are distinct points, then we refer to φ as a complex d-geodesic joining z and
w.

We will use the term complex geodesic for ‘complex CD-geodesic’.

Proposition 1.2 For a domain D in a Banach space and φ ∈ H(D,D), the following are
equivalent

(a) φ is a complex geodesic.

(b) there exist distinct points u, v ∈ D such that ρ(u, v) = CD(φ(u), φ(v)).

(c) there exists a point z ∈ D such that α(z, 1) = cD(φ(z), φ′(z)).

(d) φ is biholomorphic from D to an analytic set φ(D) and φ(D) is a holomorphic retract
of D (i.e. there exists f ∈ H(D,D) such that f ◦ f = f and f(D) = φ(D)).

(e) φ is a complex KD-geodesic and

δD|φ(D) = KD|φ(D) = CD|φ(D).

PROOF: The equivalence of (a), (b) and (c) is due to Vesentini [34] and the fact that (d)
is equivalent to (a) is due to Reiffen [27, p. 19] (see also Lempert [24]). (e) ⇒ (a) and it
remains to show that (a) ⇒ (e).

Fix u 6= v ∈ D and write p = φ(u), q = φ(v). Since ρ(u, v) = CD(p, q), Montel’s
theorem implies the existence of f ∈ H(D,D) such that f(p) = u and f(q) = v. Now
f ◦ φ ∈ H(D,D) and

ρ(f ◦ φ(u), f ◦ φ(v)) = CD(p, q) = ρ(u, v).

By the Schwarz-Pick lemma (see [10, p.5]), f ◦ φ is a biholomorphic automorphism of D
and ρ(f ◦ φ(z), f ◦ φ(w)) = ρ(z, w) for all z, w ∈ D. Since holomorphic mappings are
contractions, we have

ρ(z, w) = ρ(f ◦ φ(z), f ◦ φ(w)) ≤ CD(φ(z), φ(w))

≤ KD(φ(z), φ(w)) ≤ δD(φ(z), φ(w)) (1.1)
≤ ρ(z, w)

and (1.1) consists entirely of equalities. Thus (a) implies (e).
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Definition 1.3 We call a domain D in a complex Banach space C-connected if every pair of
points of D can be joined by a complex geodesic.

We remark that it follows from results of Vigué [37] (see also [10, proposition 11.15 and
corollary 11.17]) that a subset of a bounded convex finite dimensional domain D is the range
of a complex geodesic if and only if it is a connected one-dimensional analytic subset and a
holomorphic retract of D.

An immediate consequence of the equivalence of (a) and (e) in Proposition 1.2 is the
following result.

Proposition 1.4 If D is a C-connected domain in a Banach space, then

CD = KD = δD.

This leads to many examples of domains which are not C-connected (see for instance
[10, p.103]). In particular a proper domain in C is C-connected if and only if it is simply
connected.

On the other hand Lempert [23, 24] (see also Royden-Wong [29]) has shown that CD =
KD = δD and that cD = kD ifD is a convex bounded domain in Cn. This result was extended
to convex domains in arbitrary Banach spaces in [11], where it was used to prove that the
following are C-connected (see also [10, pp.90–91])

(a) bounded convex domains in reflexive Banach spaces

(b) the open unit ball BX of a dual Banach space X .

These facts lead us to propose the following conjecture.

Conjecture 1.5 If D is a domain in a complex Banach space X which is biholomorphically
equivalent to a bounded domain, then the following are equivalent:

(a) CD = KD = δD

(b) D is biholomorphically equivalent to a convex domain

(c) D is C-connected.

(Note that (c) implies (a) and (b) implies (a).)
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2 EXTENSION AND EXISTENCE THEOREMS
In this section, we consider a complex Banach spaceX as a subspace of its double dual space
X∗∗ via the natural embedding. BX denotes the open unit ball of X and H∞(BX) denotes
the space of scalar-valued bounded holomorphic functions onBX , with the supremum norm.
H∞(BX) is a Banach algebra. We abbreviate KBX

as KX and kBX
as kX from now on.

If U is an ultrafilter on a set I , then (X)U will denote the ultrapower of a Banach space
X . More specifically, if `∞(I,X) denotes the space of bounded X-valued functions on I
(with the supremum norm) and

NU = {(xi)i∈I ∈ `∞(I,X) : lim
U
‖xi‖ = 0},

then (X)U is the quotient space `∞(I,X)/NU .
There is a canonical isometric embedding j:X → (X)U given by

j(x) = (x)i∈I +NU

(where (x)i∈I denotes the constant function x).
The principle of local reflexivity in its ultrapower formulation (see [20]) asserts that given

a Banach space X , there exists an ultrapower (X)U such that

(i) there is an isometric embedding J :X∗∗ → (X)U which extends the canonical embed-
ding j:X → (X)U ;

(ii) the map

Q: (X)U → X∗∗

Q((xi)i∈I +NU) = w∗- lim
U
xi

satisfies QJ = idX∗∗ , ‖Q‖ = 1.

(Thus JQ is a contractive projection of (X)U onto the isometric copy J(X∗∗) of X∗∗.)

The next lemma provides a crude version of the Schwarz inequality, which we prove for
completeness.

Lemma 2.1 Suppose X is a complex Banach space, f ∈ H(BX ,D), 0 < ε < 1 and
a, b ∈ (1− ε)BX . Then there is a constant Aε depending only on ε such that

ρ(f(a), f(b)) ≤ Aε‖a− b‖.
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PROOF: We can first dispose of the case where a and b are far apart, specifically the case
‖a− b‖ > ε. Define φ: D → BX by

φ(z) =
z

1− ε
a.

Then f ◦ φ ∈ H(D,D) and it follows from the classical Schwarz-Pick lemma that

ρ(f(a), f(0)) = ρ(f ◦ φ(1− ε), f ◦ φ(0)) ≤ ρ(0, 1− ε).

Since the same estimate also applies to b

ρ(f(a), f(b)) ≤ 2ρ(0, 1− ε) ≤ Aεε ≤ Aε‖a− b‖

for Aε chosen suitably large (depending only on ε).
For ‖a− b‖ ≤ ε, we can define φ ∈ H(D, BX) by

φ(z) =
a+ b

2
+
ε(a− b)

‖a− b‖
z

and we will then have

φ

(
‖a− b‖

2ε

)
= a, φ

(
−‖a− b‖

2ε

)
= b.

Applying the Schwarz lemma to f ◦ φ, we find that

ρ(f(a), f(b)) ≤ ρ (‖a− b‖/2ε,−‖a− b‖/2ε) = 2ρ(‖a− b‖/2ε, 0) ≤ Aε‖a− b‖

since ‖a− b‖/2ε ≤ 1/2.

Theorem 2.2 Suppose Y = (X)U is an ultrapower of a complex Banach space X , where U
is an ultrafilter on the set I .

(i) Suppose, for each i ∈ I , fi:BX → D is a holomorphic function from BX to the unit disc
D in the complex plane, and

lim
U
|fi(ai)| < 1 (2.1)

for one point (ai)i∈I +NU of BY . Then the function

F :BY → D

F ((xi)i∈I +NU) = lim
U
fi(xi)

is well-defined and holomorphic.
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(ii) The Kobayashi distance KY on BY is given by

KY ((xi)i∈I +NU , (yi)i∈I +NU) = lim
U
KX(xi, yi).

PROOF: (i) Note first of all that if (xi)i∈I +NU ∈ BY , then limU ‖xi‖ < 1 and so there exists
U ∈ U so that ‖xi‖ < 1 for all i ∈ U . Thus fi(xi) is defined for i ∈ U and limU fi(xi)
makes sense. In fact, it is possible to change xi for i 6∈ U so as to ensure supi∈I ‖xi‖ < 1
without changing the coset (xi)i∈I +NU or the value of the limit. We will make this change
without comment from now on for all points in BY and, in particular we will assume that
S = supi ‖ai‖ < 1.

By compactness, limU fi(xi) certainly exists in the closed unit disc D̄. To show it is in
the open disc fix (xi)i and choose 0 < ε < 1− S so that supi ‖xi‖ < 1− ε. By Lemma 2.1,

ρ(fi(xi), fi(ai)) ≤ 2Aε (i ∈ I).

Choose now U ∈ U so that T = supi∈U |fi(ai)| < 1. It follows by the triangle inequality
that

ρ(fi(xi), 0) ≤ 2Aε + ρ(0, fi(ai)) ≤ 2Aε + ρ(0, T ).

Hence supi∈U |fi(xi)| < 1 and F does indeed map BY into D.
Next we check that F is continuous. For this, fix (xi)i + NU ∈ BY and choose ε > 0

with x = supi ‖xi‖ < 1 − 2ε. For y = (yi)i + NU ∈ BY and ‖x − y‖Y < ε, we have
‖yi‖X < 1− ε and so we can apply Lemma 2.1 to see that

ρ(fi(xi), f(yi)) ≤ Aε‖xi − yi‖

Taking limits along U , we deduce that

ρ(F (x), F (y)) ≤ Aε‖x− y‖Y ,

which is enough to show continuity of F at x.
Finally analyticity of F follows from continuity together with analyticity of the restricton

of F on complex lines in Y . For x = (xi)i +NU ∈ BY and y = (yi)i +NU ∈ Y , Montel’s
theorem shows that

F (x+ zy) = lim
U
fi(xi + zyi)

is an analytic function of z on {z ∈ C : ‖x+ zy‖Y < 1}.

(ii) Fix x = (xi)i + NU , y = (yi)i + NU ∈ BY and let Klim = limU KX(xi, yi). Choose
ε > 0 and put r = tanh(Klim + ε). Then ρ(0, r) = Klim + ε. There exists U ∈ U so
that KX(xi, yi) < Klim + ε for i ∈ U . Thus, since δX(xi, yi) = KX(xi, yi), there exists
gi ∈ H(D, BX) satisfying gi(0) = xi, gi(r) = yi (for i ∈ U ). For i ∈ I \ U , set gi = 0.
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Now define g: D → BY , by g(z) = (gi(z))i + NU . Of course we must check first that
supi ‖gi(z)‖X < 1 for all z ∈ D. To this end, observe that

KX(gi(z), 0) ≤ KX(gi(z), gi(0)) +KX(gi(0), 0)

≤ ρ(z, 0) +KX(xi, 0)

= ρ(z, 0) + ρ(‖xi‖, 0)

≤ ρ(z, 0) + sup
j∈I

ρ(‖xj‖, 0)

< ∞

Here we have used the fact that holomorphic mappings are contractions with respect to the
Kobayashi distance and our standing assumption that the xj are chosen so that supj ‖xj‖ < 1.
The equality KX(x, 0) = ρ(‖x‖, 0) (for x ∈ BX) is elementary. Hence we have

sup
i
ρ(‖gi(z)‖, 0) <∞

which implies supi ‖gi(z)‖ < 1.
Cauchy’s formula shows that the functions ‖g′′i (z)‖ are uniformly bounded on compact

subsets of D. This will enable us to show by a direct argument that g is analytic. Fix z ∈ D
and suppose |w − z| < (1− |z|)/2. Then∥∥∥∥gi(w)− gi(z)

w − z
− g′i(z)

∥∥∥∥ =

∥∥∥∥ 1

w − z

∫ w

z

g′i(ζ)− g′i(z) dζ

∥∥∥∥
=

∥∥∥∥ 1

w − z

∫ w

z

∫ ζ

z

g′′i (η) dη dζ

∥∥∥∥
≤ |w − z| sup{|g′′i (ζ)| : |ζ| ≤ (1 + |z|)/2, i ∈ I}

Hence, if ` = (g′i(z))i +NU , we have∥∥∥∥g(w)− g(z)

w − z
− `

∥∥∥∥
Y

≤M |w − z|

for |w − z| < (1− |z|)/2 and M a constant depending on z. Taking the limit as w → z, we
see that g′(z) exists and is `.

Therefore g ∈ H(D, BY ), g(0) = x and g(r) = y. It follows that

KY (x, y) = KY (g(0), g(r)) ≤ ρ(0, r) = Klim + ε.

Since this is true for all ε > 0, we have

KY (x, y) ≤ Klim = lim
U
KX(xi, yi). (2.2)
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To establish the reverse inequality, we use the fact that KX = CX to select functions
fi ∈ H(BX ,D) satisfying fi(xi) = 0, fi(yi) > 0 and KX(xi, yi) = ρ(0, fi(yi)). Applying
part (i), we get a function F ∈ H(BY ,D) which satisfies F (x) = 0 and

ρ(0, F (y)) = lim
U
ρ(0, fi(yi)) = lim

U
KX(xi, yi) = Klim.

But now the distance decreasing property of Kobayashi distances under F allows us to con-
clude that

Klim = ρ(0, F (y)) = ρ(F (x), F (y)) ≤ KY (x, y).

Combining this with (2.2) completes the proof.
Our next result is a new proof of a result of Davie and Gamelin [7]. It has come to our

attention that M. Lindström and R. Ryan have independently obtained a proof of this result
using ultrapower techniques.

Theorem 2.3 For X a complex Banach space, there exists an algebra homomorphism of
norm one,

E : H∞(BX) → H∞(BX∗∗)

which satisfies
Ef |BX = f

for all f ∈ H∞(BX).

PROOF: Given X and f ∈ H∞(BX), we choose an ultrafilter U according to the principle
of local reflexivity. To apply Theorem 2.2(i), we take fi = f/‖f‖∞ for all i. Unless f is
constant, the hypothesis (2.1) is satisfied for ai = 0. In any case, it follows that the function

F :BY → C
F ((xi)i∈I +NU) = lim

U
f(xi)

is holomorphic and ‖F‖∞ ≤ ‖f‖∞. Put Ef = F ◦ J , where J is as in the principle of local
reflexivity. It is straightforward to check that E has the required linearity and multiplicative
properties and that ‖E‖ ≤ 1. Since J coincides with the canonical embedding j:X → (X)U
on BX , it is also easy to see that Ef coincides with f on BX .

Theorem 2.4 For X a complex Banach space,

KX∗∗(x, y) = KX(x, y)

for all x, y ∈ BX .
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PROOF: Since the canonical inclusion from BX to BX∗∗ is continuous and linear, it is holo-
morphic and the distance decreasing property of the Kobayashi metric implies

KX∗∗(x, y) ≤ KX(x, y)

for x, y ∈ BX .
Fix x, y ∈ BX . By Montel’s theorem, we can find f ∈ H(BX ,D) so that f(0) = 0 and

KX(x, y) = CX(x, y) = ρ(f(x), f(y)).

By Propostion 2.3, we can find an extension f̃ ∈ H∞(BX∗∗) of f with ‖f̃‖∞ ≤ 1. Since
f̃(x) = f(x) ∈ D, f̃ has all its values in D. We conclude

KX(x, y) = ρ(f(x), f(y)) = ρ(f̃(x), f̃(y)) ≤ KX∗∗(x, y).

We are now in a position to extend Théorème 4.3 of [11].

Theorem 2.5 If a complex Banach space X is 1-complemented in its second dual, then BX

is C-connected.

PROOF: Let P denote a norm 1 projection from X** onto X and let p 6= q ∈ BX . Since
BX∗∗ is the unit ball of a dual Banach space, Théorème 4.3 of [11] implies that there exists
φ ∈ H(D, BX∗∗) and u, v ∈ D satisfying φ(u) = p, φ(v) = q and ρ(u, v) = KX∗∗(p, q).

Now P ◦ φ ∈ H(D, BX) and P ◦ φ(u) = p, P ◦ φ(v) = q. By Theorem 2.4 and [11,
Théorème 2.5],

ρ(u, v) = KX∗∗(p, q) = KX(p, q) = CX(p, q).

Hence P ◦ φ is a complex geodesic in BX . Since p and q are arbitrary, BX is C-connected.

Remark 2.6 Preduals of C*-algebras satisfy the hypotheses of Theorem 2.5 (see [32]) and
these include examples which are not covered by the results in [11].

On the other hand, c0 is well known not to satisfy the hypotheses of Theorem 2.5, although
Bc0 is C-connected (which follows from homogeneity — see Remarks 5.10).

3 UNIQUENESS RESULTS
If φ is a complex geodesic joining the points p and q of a domainD and f is a biholomorphic
automorphism of D, then φ ◦ f is also a complex geodesic joining p and q (because f is a
ρ-isometry). Thus there is never a unique complex geodesic joining p and q, because of this
possibility of reparametrizing complex geodesics. However, Vesentini [33] has shown that
if φ and ψ are complex geodesics then they have the same range φ(D) = ψ(D) if and only
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if ψ = φ ◦ f for some biholomorphic automorphism f of D (this can also be deduced from
the global vector-valued subordination theorem of Finkelstein and Whitley [13]). We thus
discuss uniqueness of complex geodesics up to reparametrization, by means of the following
normalization.

We call a complex geodesic φ a normalized geodesic joining p and q if φ(0) = p and
φ(s) = q for some positive real number s. The number s is uniquely determined by p and q
— in fact s = tanhCD(p, q). By the homogeneity of the unit disc and the result of Vesentini
cited above, it follows that there is a unique normalized complex geodesic joining two points
p, q ∈ D if and only if all complex geodesics joining p and q have the same range.

The following are known results concerning uniqueness.

(a) If BX is the unit ball of a Banach space X and x ∈ BX , x 6= 0, then there is a
unique normalized complex geodesic joining 0 and x if and only if x/‖x‖ is a complex
extreme point of BX . (Vesentini [33]).

(b) If D is a strictly convex domain (i.e. each point of the boundary ∂D is a (real) extreme
point of D) in a finite dimensional space, then there exist unique normalized complex
geodesics joining all pairs of points in D. (Lempert [23] ).

In this section, we extend (b) to a class of Banach spaces which includes all reflexive
Banach spaces and give a general criterion for uniqueness of complex geodesics which high-
lights the problem of interpolating between the results (a) and (b) above. A more detailed
study of non-uniqueness of complex geodesics has been undertaken by Gentili [14, 15, 16]
(see also Section 6).

Definition 3.1 A complex Banach spaceX has the analytic Radon-Nikodym property (aRNP)
if each f ∈ H∞(D, X) has radial limits almost everywhere on the unit circle.

H∞(D, X) means those functions in H(D, X) which have bounded range. If X has
aRNP and f ∈ H∞(D, X), we can extend f to almost all points eiθ ∈ ∂D (almost all with
respect to Lebesgue measure on ∂D) by

f(eiθ) = lim
r→1−

f(reiθ).

Moreover f is uniquely determined by the boundary values f(eiθ). Reflexive Banach spaces
and Banach spaces with the Radon-Nikodym property (e.g separable dual spaces) have
aRNP. The Banach space c0 does not have aRNP. For further details we refer to [10, Chapter
12] and [18].

Now suppose we have a convex bounded domain D in a Banach space X with aRNP. Let
p 6= q ∈ D and let G(p, q) denote the set of all normalized complex geodesics joining p and
q. If φ, ψ ∈ G(p, q) and 0 < λ < 1, and s = tanhCD(p, q), then λφ + (1− λ)ψ ∈ G(p, q).
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This follows from convexity of D (which ensures that λφ+(1−λ)ψ(D) ⊂ D) together with
the facts that

(λφ+ (1− λ)ψ)(0) = φ(0) = ψ(0) = p and (λφ+ (1− λ)ψ)(s) = φ(s) = ψ(s) = q.

In other words, G(p, q) is a convex subset of H(D,D)
Next, notice that if φ ∈ G(p, q), then

lim
r→1−

CD(φ(reiθ), φ(0)) = lim
r→1−

ρ(reiθ, 0) = ∞.

It follows that at points eiθ where φ(eiθ) is defined (almost all points on ∂D by aRNP),
φ(eiθ) ∈ ∂D. Now if ψ is another element of G(p, q), then for almost all θ,

φ(eiθ), ψ(eiθ) and
(
φ+ ψ

2

)
(eiθ) = (1/2)(φ(eiθ) + ψ(eiθ))

are all in ∂D. If we now assume thatD is strictly convex, then we must have φ(eiθ) = ψ(eiθ)
for almost all eiθ. This implies φ = ψ. We have thus proved the following result.

Theorem 3.2 If X is a complex Banach space with the analytic Radon-Nikodym property
and D ⊂ X is a strictly convex bounded domain, then there exists at most one normalized
complex geodesic joining p and q.

We now restrict our attention to the case where D is the open unit ball BX of X . Let
φ, ψ ∈ G(p, q) for two points p, q ∈ BX and suppose again that X has aRNP. Let g = ψ− φ
and s = tanhCX(p, q). Since φ(0) = ψ(0) = p and φ(s) = ψ(s) = q, g(0) = g(s) = 0 and
we can therefore write g(z) = z(z − s)h(z) for some h ∈ H∞(D, X). Using aRNP and the
convexity of G(p, q), we can see that the following result holds.

Proposition 3.3 If X has aRNP and φ is a normalized complex geodesic joining two points
p, q ∈ BX , then φ is the unique such geodesic if and only if the zero function is the only
element h ∈ H∞(D, X) satisfying

‖φ(eiθ) + λeiθ(eiθ − s)h(eiθ)‖ = 1 (3.1)

for almost all θ, all λ ∈ [0, 1] (where s = tanhCX(p, q)).

Examples 3.4 (a) If X has aRNP and is 1-complemented in X∗∗, and if BX is strictly
convex, then Theorems 2.5 and 3.2 show that there exists a unique normalized complex
geodesic joining each pair of points p, q ∈ BX .

(b) This applies in particular when X is the space `p of p-summable sequences (1 < p <
∞), because `p is reflexive and has a strictly convex unit ball.
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4 CONTINUOUS COMPLEX GEODESICS
In this section we show that complex geodesics can be extended continuously to the boundary
under a complex uniform convexity hypothesis.

Definition 4.1 If D ⊂ X is a domain in a complex Banach space X , then we define

δD(z, v) = sup{r > 0 : z + rvD ⊂ D}

for z ∈ D, v ∈ X , ‖v‖ = 1.
We define the modulus of complex convexity of D to be

δD(ε) = sup{δD(z, v) : z ∈ D, d(z, ∂D) ≤ ε, ‖v‖ = 1},

(where d(z, ∂D) denotes the distance from a point z in D to the boundary).
The domain D is called complex uniformly convex if δD(ε) → 0 as ε→ 0.

Remarks 4.2 For the case where D = BX is the unit ball of X , Globevnik [17] introduced

ωc(ε) = sup{‖y‖ : ‖x+ ζy‖ ≤ 1 + ε for all ‖x‖ = 1, ζ ∈ D}

and this function is closely related to δD(ε). In fact, it is easy to check that

ωc(ε)

1 + ε
= sup{δD(z, v) : ‖v‖ = 1, ‖z‖ = 1/(1 + ε)} = δD

(
ε

1 + ε

)
and thus that

δD(ε/2) ≤ ωc(ε) ≤ 2δD(ε) (0 < ε ≤ 1).

Functions which are inverse to δD(ε) and ωc(ε) were considered by Davis, Garling and
Tomczak-Jaegermann [8] and called hX

∞ and HX
∞ (respectively). Dilworth [9, theorem 2.1]

has shown that complex uniform convexity ofBX (or uniformH∞-convexity ofX in the nota-
tion of [8]) is equivalent to the notion of uniform PL-convexity which was studied intensively
in [8].

A result similar to the following one can be obtained for the case where the domain is
the unit ball using theorem 2 of [17].

Proposition 4.3 If D ⊂ X is a convex domain, then

cD(z, v) ≥ ‖v‖
2δD(ε)

holds for v ∈ X , z ∈ D, ε = d(z, ∂D).
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PROOF: We will make use of the fact that cD = kD for D convex (see [11]). Fix z ∈ D,
v ∈ X and consider holomorphic mappings f : D → D with f(0) = z, f ′(0) = v/r, r > 0.

Consider the function

g(ζ) =
1

2π

∫ 2π

0

f(eiθζ)(1 + cos θ) dθ.

Since (1 + cos θ) dθ/(2π) is a probability measure on [0, 2π], we may regard g(ζ) as a limit
of convex combinations of points in D. So g takes values in the closure D̄. Since g(0) =
f(0) ∈ D and D is convex, it follows that g maps D into D [33, p. 376].

Working with the power series representation of f , we find that

g(ζ) = f(0) +
1

2
f ′(0)ζ.

(In fact, g(ζ) is a Cesaro mean of the power series of f .). Thus

g(ζ) = f(0) +
v

2r
ζ = z +

‖v‖
2r

v

‖v‖
ζ

maps D into D, which shows that

‖v‖
2r

≤ δD(z, v/‖v‖) ≤ δD(ε).

Rearranging this, we find r ≥ ‖v‖/(2δD(ε)). Since kD(z, v) = cD(z, v) is the infimum of
all possible values of r, the result follows.

Theorem 4.4 Let D be the unit ball BX of a complex Banach space X . If D is complex
uniformly convex and δD(ε) ≤ Aεs for some constants A > 0, s > 0, then all complex
geodesics φ: D → D extend to continuous functions φ: D̄ → D̄.

PROOF: By Proposition 4.3, we have (for ζ ∈ D)

cD(φ(ζ), φ′(ζ)) ≥ ‖φ′(ζ)‖
2δD(1− ‖φ(ζ)‖)

.

Using the hypothesis and the fact that φ is a complex geodesic, we deduce

cD(φ(ζ), φ′(ζ)) = cD(ζ, 1) =
1

1− |ζ|2
≥ ‖φ′(ζ)‖

2A(1− ‖φ(ζ)‖)s

or

‖φ′(ζ)‖ ≤ 2A(1− ‖φ(ζ)‖)s

1− |ζ|2
. (4.1)
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Next observe that

CD(φ(0), φ(ζ)) = ρ(0, ζ) = tanh−1(|ζ|) ≤ CD(0, φ(ζ)) + CD(0, φ(0)).

Recall that CD(0, z) = tanh−1 ‖z‖ for z ∈ D = BX . Using elementary estimates, we
conclude that

1− ‖φ(ζ)‖ ≤ Aφ(1− |ζ|)

where Aφ is a constant depending on ‖φ(0)‖.
Combining this observation with (4.1), we see that

‖φ′(ζ)‖ ≤ A1
(1− |ζ|)s

1− |ζ|2
≤ A1

1

(1− |ζ|)1−s

which implies (see for instance [12, theorem 5.5]) that φ satisfies a Lipschitz condition

‖φ(ζ)− φ(η)‖ ≤ C|ζ − η|s.

Hence φ: D → X is uniformly continuous and extends continuously to a function f : D̄ → X .

If a complex geodesic φ: D → D extends to a continuous function φ: D̄ → D̄, we call φ
a continuous complex geodesic.

Examples 4.5 (i) For X = L1, D = BX , Globevnik [17] proved that δD ≤ A
√
ε (or

rather, he proves the equivalent fact that ωc(ε) ≤ A
√
ε). Thus all complex geodesics

in BX are continuous, by Theorem 4.4.

(ii) More generally, if X is the predual of a C*-algebra and D = BX , we deduce from a
result due to Haagerup (see [8, theorem 4.3]) that δD(ε) ≤ A

√
ε.

Thus all complex geodesics in BX are continuous by Theorem 4.4. Existence of com-
plex geodesics in BX is guaranteed by Theorem 2.5.

Remark 4.6 From corollary 2.5 of [15], it follows that if all complex geodesics in the unit
ball BX are continuous, then all points of ∂BX are complex extreme points. Theorem 4.4
falls short of being a converse to this.

5 EXAMPLES IN CLASSICAL BANACH SPACES
We apply the results of the preceding sections to give a complete description of the complex
geodesics in the unit ball of `p, 1 ≤ p <∞. To obtain these examples, we require a Banach
space version of a result of Lempert [23, proposition 1] and [29]. Various extensions are
possible and we have chosen one which is suitable for the applications we have in mind.
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Definition 5.1 For X a complex Banach space with dual space X∗, we let H∞
∗ (D, X∗)

denote the space of X∗-valued bounded analytic functions on D which have weak*-radial
limits at almost all boundary points.

In other words f ∈ H∞
∗ (D, X∗) means that f ∈ H∞(D, X∗) and there exists a function

f̃ : ∂D → X∗ so that

lim
r→1−

〈x, f(reiθ)〉 = 〈x, f̃(eiθ)〉 (all x ∈ X)

holds for almost all θ ∈ R.

If X∗ has aRNP, then all functions in H∞(D, X∗) have norm radial limits at almost
all points of ∂D, and therefore H∞

∗ (D, X∗) = H∞(D, X∗). By a result of Danilevich [6,
theorem 1.4], this equality also holds if X is separable.

In general, the limit function f̃(eiθ) may only be weak*-measurable, a rather intractable
condition. Moreover it is possible that the space H∞

∗ (D, X∗) depends on the choice of a
predual X for X∗. However, the function f̃(eiθ) determines the holomorphic function f(ζ)
uniquely as can be seen by applying standard results (see [12]) to the scalar-valued bounded
analytic functions 〈x, f(ζ)〉. We will therefore not cause confusion by using the notation
f(eiθ) instead of f̃(eiθ) for the boundary function.

Lemma 5.2 Let X be a complex Banach space, f ∈ H∞
∗ (D, X∗) and h: D̄ → X a continu-

ous function which is holomorphic on D. Then

lim
r→r−

〈h(reiθ), f(reiθ)〉 = 〈h(eiθ), f(eiθ)〉

for almost all θ and

〈h(ζ), f(ζ)〉 =
1

2π

∫ 2π

0

〈h(eiθ), f(eiθ)〉 1− |ζ|2

1 + |ζ|2 − 2Re (e−iθζ)
dθ

for all ζ ∈ D.

PROOF: The first assertion follows from the inequality

|〈h(reiθ), f(reiθ)〉 − 〈h(eiθ), f(eiθ)〉|
≤ |〈h(reiθ)− h(eiθ), f(reiθ)〉|+ |〈h(eiθ), f(reiθ)− f(eiθ)〉|
≤ ‖h(reiθ)− h(eiθ)‖ ‖f‖∞ + |〈h(eiθ), f(reiθ)− f(eiθ)〉|
→ 0

for almost all θ by continuity of h and the definition of H∞
∗ (D, X∗). The second assertion

follows from the standard fact (see [12]) that scalar-valued bounded analytic functions like
〈f(ζ), h(ζ)〉 are the Poisson integrals of their (almost everywhere) boundary values.
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If X is a Banach space and x ∈ ∂BX , then the Hahn-Banach theorem assures us of the
existence of at least one supporting hyperplane for BX at x. That is, there exists Nx ∈ X∗

such that 〈x,Nx〉 = 1 and Re 〈p,Nx〉 < 1 for p ∈ BX . We will use the notation Nx for a
choice of one such functional, bearing in mind the possibility that it may not be unique.

Proposition 5.3 Let X be a complex Banach space and φ: D̄ → B̄X a continuous map
satisfying

(i) φ | D is holomorphic and φ(D) ⊂ BX;

(ii) φ(∂D) ⊂ ∂BX; and

(iii) there exists a choice ofNφ(ζ) for almost all ζ ∈ ∂D and a measurable function p: ∂D →
R+ such that the mapping

h(eiθ) = eiθp(eiθ)Nφ(eiθ)

is almost everywhere the weak*-radial limit of a function h ∈ H∞
∗ (D, X∗).

Then φ is a complex geodesic.

PROOF: Let g: D → BX be a holomorphic mapping with g(0) = φ(0) and g′(0) = λφ′(0),
λ ≥ 0. Let gr(ζ) = g(rζ) for 0 < r < 1 and ζ ∈ D. Then gr is continuous on D̄ and
holomorphic on D, gr(0) = φ(0) and g′r(0) = λrφ′(0). Moreover gr(ζ) ∈ BX for ζ ∈ D̄.
From the hypotheses, we see that

1 = 〈φ(eiθ), Nφ(eiθ)〉 > Re 〈gr(e
iθ), Nφ(eiθ)〉

for almost all θ. Hence

Re
〈
φ(eiθ)− gr(e

iθ)

eiθ
, eiθp(eiθ)Nφ(eiθ)

〉
= p(eiθ)Re 〈φ(eiθ)− gr(e

iθ), Nφ(eiθ)〉 > 0

for almost all θ.

Since
φ(ζ)− gr(ζ)

ζ
is holomorphic on D and continuous on D̄, the function

H(ζ) =

〈
φ(ζ)− gr(ζ)

ζ
, h(ζ)

〉
is the Poisson integral of its boundary values H(eiθ) by Lemma 5.2. By the above remark
and Lemma 5.2, ReH(eiθ) > 0 for almost all θ and it follows from the Poisson formula that
ReH(0) > 0, i.e.

Re 〈φ′(0)− g′r(0), h(0)〉 = (1− λr)Re 〈φ′(0), h(0)〉 > 0.
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Applying this to the special case where g(ζ) = φ(0) is constant (and λ = 0) we see that
Re 〈φ′(0), h(0)〉 > 0. Thus, returning to the general case, we have 1− rλ > 0. Since this is
true for all 0 < r < 1, we deduce that λ ≤ 1.

Since this is true for all g, we have established

kX(φ(0), φ′(0)) = cX(φ(0), φ′(0)) = 1

which shows, by Proposition 1.2, that φ is a complex geodesic.
For µ a σ-finite measure on a σ-algebra Σ of subsets of a set Ω and 1 ≤ p < ∞,

we use the standard notation Lp(µ) for the Banach space of (equivalence classes of) p-
summable Σ-measurable (C-valued) functions on Ω normed by ‖f‖p =

(∫
Ω
|f |p dµ

)1/p.
L∞(µ) denotes the essentially bounded Σ-measurable functions with the essential sup norm
‖f‖∞. These include as special cases the sequence spaces `p (where µ is counting measure
on the natural numbers) and the finite-dimensional spaces `pn (which are Cn with the norm

‖(z1, z2, . . . , zn)‖p =
(∑n

j=1 |zj|p
)1/p

for 1 ≤ p <∞).
In order to discuss complex geodesics in the unit ball Bp of Lp(µ) for 1 ≤ p < ∞ we

will consider nonconstant mappings φ: D → Bp of the form

φ(ζ)(ω) = c(ω)

(
ζ − α(ω)

1− α(ω)ζ

)β(ω)(
1− α(ω)ζ

1− γ̄ζ

)2/p

(5.1)

(ζ ∈ D, ω ∈ Ω) where the parameter γ and the measurable functions α(ω), β(ω) and c(ω)
satisfy

(a) γ ∈ D, α ∈ L∞(µ), ‖α‖∞ ≤ 1,
β takes only the values 0 and 1.

(b)
∫

Ω
|c(ω)|p(1 + |α(ζ)|2) dµ(ω) = 1 + |γ|2

(c)
∫

Ω
|c(ω)|pα(ω) dµ = γ

 (5.2)

Later, we will specialise to the case where Lp(µ) = `p and then we will start to use subscript
notation — φj(ζ) rather than φ(ζ)(j), αj instead of α(j), etc. — and of course summation
over j in place of integrals.

Proposition 5.4 Let Bp denote the open unit ball of Lp(µ), 1 ≤ p < ∞. Then every non-
constant mapping φ of the form (5.1) where γ, α(ω), β(ω) and c(ω) satisfy the conditions
(5.2) is a complex geodesic in Bp.

Note that at points where c(ω) = 0, the values of α(ω) and β(ω) are immaterial. Thus
we can suppose if we wish that

support (β) = {ω : β(ω) = 1} ⊂ {ω : c(ω) 6= 0} = support (c)
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and that support (α) ⊂ support (c). Since (ζ − α(ω))/(1− α(ω)ζ) is a constant function of
ζ when |α(ω)| = 1 (the constant is of modulus 1), we can also assume support (β) ⊂ {ω :
|α(ω)| < 1}. (Then there is no problem defining φ(ζ) for |ζ| = 1.) With these assumptions,
the condition for φ to be non-constant is

µ({ω : c(ω) 6= 0} ∩ {ω : β(ω) = 1 or α(ω) 6= γ}) > 0.

Note also that condition (5.2)(b) implies that c ∈ Lp(µ).

PROOF: Observe that for δ =

(
2

1− |γ|

)2/p

,

|φ(ζ)(ω)| ≤ δ|c(ω)| (ζ ∈ D̄, ω ∈ Ω) (5.3)

so that φ(D̄) ⊂ Lp(µ). Next if (ζn) is a sequence in D̄ which converges to a point ζ ∈ D̄,
then φ(ζn)(ω) → φ(ζ)(ω) for all ω. Hence by the Lebesgue dominated convergence theorem
and (5.3), ‖φ(ζn)− φ(ζ)‖p → 0 as n → ∞. This shows that φ: D̄ → Lp(µ) is a continuous
mapping.

For each fixed ω ∈ Ω the map ζ 7→ φ(ζ)(ω) is analytic on D and from (5.3) we see that
its Taylor series expansion

φ(ζ)(ω) =
∑

n

an(ω)ζn (5.4)

with coefficients satisfying |an(ω)| ≤ δ|c(ω)| (all n and all ω). Calculating the an(ω) using
the binomial theorem and multiplication of power series, we can check that the functions
an(ω) are measurable and then the estimate on the coefficients implies that an ∈ Lp(µ).

Now, for a fixed ζ ∈ D the sequence
∑n

j=0 aj(·)ζj of measurable functions converges
pointwise to φ(ζ)(·) as n→∞ by (5.4). Since∣∣∣∣∣

n∑
j=0

aj(ω)ζj

∣∣∣∣∣ ≤ δ|c(ω)|
∞∑

j=0

|ζ|j =
δ|c(ω)|
1− |ζ|

and δc(·)/(1− |ζ|) ∈ Lp(µ), the Lebesgue dominated convergence theorem shows that

φ(ζ)(·) =
∞∑

n=0

an(·)ζn

in Lp(µ) for each ζ ∈ D. Hence φ is holomorphic on D.
For θ ∈ R, we have

‖φ(eiθ)‖p
p =

∫
Ω

|φ(eiθ)(ω)|p dµ(ω)

=

∫
Ω

|c(ω)|p
∣∣∣∣∣1− α(ω)eiθ

1− γ̄eiθ

∣∣∣∣∣
2

dµ(ω)
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=
1

1 + |γ|2 − 2Re (γ̄eiθ)

∫
Ω

|c(ω)|p(1 + |α(ω)|2 − 2Re (α(ω)eiθ) ) dµ(ω)

= 1

by conditions (5.2) (b) and (c). Hence φ(∂D) ⊂ ∂Bp and φ(D̄) ⊂ B̄p. Since φ is non-
constant and all unit vectors in Lp(µ) are complex extreme points of the unit ball the strong
maximum modulus theorem of Thorp and Whitley (see for instance [10, proposition 6.19])
implies that φ(D) ⊂ Bp.

We consider the dual space (Lp(µ))∗ of Lp(µ) to be identified with Lq(µ) (1/p+1/q = 1,
1 < q ≤ ∞) in a complex linear fashion (rather than the conjugate linear identification
frequently used) so that g ∈ Lq(µ) acts on f ∈ Lp(µ) via 〈f, g〉 =

∫
Ω
f(ω)g(ω) dµ(ω). If

f ∈ ∂Bp, then one choice of a supporting hyperplane Nf ∈ Lq(µ) is given by

Nf (ω) = |f(ω)|p−2f(ω)

(where 0p−2 = 0 for all p).
To complete the proof, we apply Proposition 5.3 with

p(eiθ) = |1− γ̄eiθ|2

h(ζ)(ω) = c̃(ω)(1− α(ω)ζ)2−2/p(1− γ̄ζ)2/p

(
ζ − α(ω)

1− α(ω)ζ

)1−β(ω)

with c̃(ω) = |c(ω)|p−2c(ω). Note that c̃ ∈ Lq(µ). If 1 < p < ∞ an argument similar to
the one given above to show that φ is holomorphic on D and continuous on D̄ shows that
the same is true of h. This is more than enough to show that h ∈ H∞

∗ (D, (Lp(µ))∗). Since
h(eiθ) = eiθp(eiθ)Nφ(eiθ), this shows that φ is a complex geodesic when p > 1.

When p = 1,

h(ζ)(ω) = (1− γ̄ζ)2c̃(ω)

(
ζ − α(ω)

1− α(ω)ζ

)1−β(ω)

and ‖c̃‖∞ ≤ 1. It is quite easy to see that h is holomorphic on D and that ‖h(ζ)‖∞ ≤
(1 + |γ|)2 for all ζ ∈ D. For each ω ∈ Ω and θ ∈ R, limr→1− h(re

iθ)(ω) = h(eiθ)(ω). Using
the boundedness of h and the Lebesgue dominated convergence theorem it is then easy to
see that h has weak* radial limits at all points eiθ ∈ ∂D, i.e. that

lim
r→1−

〈f, h(reiθ)〉 = 〈f, h(eiθ)〉

for all f ∈ L1(µ). Thus h ∈ H∞
∗ (D, (L1(µ))∗) and φ is also a complex geodesic in the p = 1

case.
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Proposition 5.5 Let Bp denote the open unit ball of `p, 1 ≤ p < ∞. Then any two distinct
points in Bp can be joined by a normalized complex geodesic φ of the form given in (5.1).

That is, there exists a complex geodesic φ(ζ) = (φj(ζ))
∞
j=1 joining the points where

φj(ζ) = cj

(
ζ − αj

1− ᾱjζ

)βj
(

1− ᾱjζ

1− γ̄ζ

)2/p

(5.5)

γ ∈ D, αj ∈ D̄, cj ∈ C, βj = 0 or 1,
∑

j |cj|p(1 + |αj|2) = 1 + |γ|2 and
∑

j |cj|pαj = γ.

PROOF: The existence of some complex geodesic joining the two points follows from Theo-
rem 2.5 (or from [11]). We also know that all complex geodesics in Bp are continuous from
Theorem 4.4. For the p = 1 case the uniform complex convexity hypothesis was established
by Globevnik [17] (see Examples 4.5) and the p > 1 case is more straightforward because
`p is uniformly convex in the real sense (see [8]).

Our proof that there exists geodesics of the required form relies heavily on finite-dimensional
results (i.e. results for the case of `pn) of Poletskiǐ [26] and Gentili [16]. For 1 < p < ∞,
Poletskiǐ [26] proved that all geodesics in the unit ball Bp,n of `pn are of the above form
(except that he omitted the possibility that βj could be 0). Gentili [16, Theorem 6] proved
that all continuous complex geodesics in B1,n are of the above form. Now that we know
all complex geodesics in B1,n are continuous, it follows that all complex geodesics in B1,n

are of the above form. (We could actually circumvent Gentili’s result. By taking a limiting
argument based on Poletskiǐ’s result and the fact that ∩p>1Bp,n = B1,n, we could establish
the existence of complex geodesics of the required form joining any pair of points in B1,n.)

Now let x, y ∈ Bp be two distinct points.
We consider `pn as being identical with the subspace {(z1, z2, . . . , zn, 0, 0, . . .)} of `p

and we will use the notation x(n) for the natural projection (x1, x2, . . . , xn, 0, . . .) of x =
(x1, x2, . . .) into `pn. Similarly for y(n). Consideration of the inclusion map :B`p

n
→ Bp and

the projection z 7→ z(n):Bp → B`p
n
, which are both holomorphic and therefore contractions

with respect to the Carathéodory distance, shows that

C`p
n
(x(n), y(n)) = C`p(x(n), y(n)) ≤ C`p(x, y) (x, y ∈ Bp).

Let φ(n) denote a normalized complex geodesic in the unit ball of `pn with φ(n)(0) = x(n)

and φ(n)(sn) = y(n), where sn = tanh−1C`p(x(n), y(n)) > 0. (Strictly speaking this may not
make sense for small n when it may happen that x(n) = y(n).) Let the parameters associated
with φ(n) be denoted α(n)

j , β(n)
j , γ(n) and c(n)

j (1 ≤ j ≤ n).
There is a subsequence of n’s along which we have

α
(n)
j → α, β

(n)
j → βj, γ(n) → γ, c

(n)
j → cj

for each j. Since
∑

j |c
(n)
j |p < 2 for all n, we have

∑
j |cj|p ≤ 2. We claim that |γ| < 1.

Observe that

φ
(n)
j (ζ) → φj(ζ) = cj

(
ζ − αj

1− ᾱjζ

)βj
(

1− ᾱjζ

1− γ̄ζ

)2/p
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uniformly on compact subsets of D as n → ∞ along the subsequence. Hence φj(0) = xj

and φj(s) = yj where

s = lim
n
sn = lim

n
tanh−1C`p(x(n), y(n)) = tanh−1C`p(x, y).

Thus we can pick a j with φj non-constant. If |γ| = 1, then φj would be unbounded on D
unless αj = γ. φj unbounded leads to a contradiction since each φ(n)

j is bounded by 1 and in
the case αj = γ, φj would be constant. Hence |γ| < 1. Using

∑
j |cj|p < ∞ we can argue

as in the proof of Proposition 5.4 to show that

φ = (φ1, φ2, . . .): D → `p

is holomorphic on D and continuous on D̄.
Since

∑
j |φ

(n)
j (ζ)|p ≤ 1 for all n, we have

∑
j |φj(ζ)|p ≤ 1 for |ζ| < 1. Since φ(0) = x

we have φ(D) ⊂ Bp (see [33, p. 376]) and since φ(s) = y, φ must be a complex geodesic. It
follows that ‖φ(ζ)‖p

p = 1 for |ζ| = 1, and expanding this out as in the proof of Proposition 5.4
we find

1 + |γ|2 − 2Re (γ̄ζ) =
∞∑

j=1

|cj|p(1 + |αj|2 − 2Re (ᾱζ)) (|ζ| = 1).

As both sides are harmonic for ζ ∈ D and continuous on D̄, the equality remains valid
for ζ ∈ D. Putting ζ = 0 gives

∑
j |cj|p(1 + |αj|2) = 1 + |γ|2 and then it follows that∑

j |cj|pαj = γ.

Lemma 5.6 Let f ∈ H∞(D), γ ∈ D. Then

f(eiθ)(
eiθ − γ

1− γ̄eiθ

)
is a non-negative real number for almost all θ ∈ R if and only if

f(ζ) = t

(
ζ − α

1− ᾱζ

)(
1− ᾱζ

1− γ̄ζ

)2

for some t ≥ 0, |α| ≤ 1.

PROOF: The case γ = 0 is due to Gentili [16] (see lemma 2 and the proof of theorem 6). The
general case follows from Gentili’s result by the change of variables η = (ζ − γ)/(1− γ̄ζ).
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Lemma 5.7 If X = `1n or X = `1 and x 6= y ∈ BX , then there is a unique normalized
complex geodesic in BX joining x and y.

PROOF: As already noted, we know that there exists a normalized complex geodesic φ in
BX joining x and y. In fact we have an explicit form (5.5) of one such φ = (φj)j by
Proposition 5.5. , where

φj(ζ) = cj

(
ζ − αj

1− ᾱjζζ

)βj
(

1− ᾱjζ

1− γ̄ζ

)2

for all j
Now suppose ψ is a second normalized complex geodesic joining x and y. Suppose

φ(0) = ψ(0) = x and φ(s) = ψ(s) = y where s > 0. The argument given earlier in the
proof of Theorem 3.2 shows that f = λφ + (1 − λ)ψ is also a complex geodesic joining x
and y. Thus ‖f(eiθ)‖ = 1 for all θ ∈ R. It follows that we must have equality in the triangle
inequality

1 = ‖f(eiθ)‖ =
∑

j

|λφj(e
iθ) + (1− λ)ψj(e

iθ)| ≤
∑

j

λ|φj(e
iθ)|+ (1− λ)|ψj(e

iθ)| = 1.

This forces
ψj(e

iθ)

φj(eiθ)

to be a non-negative real number for all θ except those for which the denominator is zero.
To prove that ψj = φj , we consider the case cj = 0 and cj 6= 0 separately. In the first

case φj ≡ 0 and hence xj = yj = 0. Since linear isometries of X map complex geodesics in
BX to complex geodesics, ψ and

ψ̃ = (ψ1, . . . , ψj−1,−ψj, ψj+1, . . .)

are both normalized complex geodesics joining x and y. Therefore, so is g = (ψ + ψ̃)/2.
Since ‖g(eiθ)‖ = ‖ψ(eiθ)‖ = 1 for all θ, it easily follows that ψj ≡ 0 ≡ φj .

If cj 6= 0, Lemma 5.6 applied to the function

φj(ζ)

cj

(
ζ − αj

1− ᾱjζ

)1−βj

shows that
φj(e

iθ)

cj

(
eiθ − αj

1− ᾱjeiθ

)1−βj
/(

eiθ − γ

1− γ̄eiθ

)
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is non-negative for almost all θ. Therefore the same holds for ψj(e
iθ) in place of φj(e

iθ) and
Lemma 5.6 then shows that there exist t > 0 and |β| ≤ 1 so that

ψj(ζ) = tcj

(
ζ − αj

1− ᾱjζ

)βj−1(
ζ − β

1− β̄ζ

)(
1− β̄ζ

1− γ̄ζ

)2

.

If βj = 0 and |αj| < 1, then analyticity of ψj(ζ) forces αj = βj and two terms cancel
in the expression for ψj(ζ). Then from φj(0) = ψj(0) = xj , we conclude that cj = tcj and
t = 1. So φj = ψj in this situation.

In the remaining cases, φj(0) = ψj(0) = xj yields

tcj(−αj)
βj−1(−β) + cj(−αj)

βj

and hence αj = tβ. Then ψj(s) = φj(s) = yj and some cancellation of common terms
shows that

(s− αj)(1− ᾱjs) = t(s− β)(1− β̄s).

Combining this with αj = tβ yields

(1− t)s(1− t|β|2) = 0.

Hence t = 1 or t = |β|−2. In the second case,

αj = tβ = 1/β̄.

Since |αj| ≤ 1 and |β| ≤ 1, we must have |αj| = |β| = 1 so that t = 1. Hence αj = β and
ψj(ζ) = φj(ζ).

We can summarise our results for `p as follows.

Corollary 5.8 Let Bp denote the unit ball of `p, 1 ≤ p <∞. Then

(i) Any two distinct points in Bp can be joined by a unique normalized complex geodesic.

(ii) All complex geodesics in Bp are continuous.

(iii) A map φ: D → Bp is a complex geodesic if and only if it is a non-constant map of the
form given in Proposition 5.5

PROOF: For all 1 ≤ p <∞, existence follows from Theorem 2.5 (or from [11]). Uniqueness
for p > 1 follows from Theorem 3.2 and uniqueness for p = 1 has just been established in
Lemma 5.7.

(ii) follows from Theorem 4.4. For p = 1, this has already been noted in Examples 4.5.
It is straightforward that Theorem 4.4 applies to `p for 1 < p < ∞ because `p is uniformly
convex in the real sense (see [8]).

(iii) follows from Proposition 5.5 and (i).
We suspect that a more general version of this result holds for Lp(µ) in place of `p, but

we have not managed to prove Lp-versions of Propositions 5.5 or 5.7.
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Example 5.9 Let X = `p1 ⊕r `
p2 = {x = (y, z) : y ∈ `p1 , z ∈ `p2} normed by ‖x‖ =(

‖y‖r
p1

+ ‖z‖r
p2

)1/r.
One can check using Proposition 5.3 that for 1 ≤ pi < ∞, 1 ≤ r < ∞ all nonconstant

maps φ: D → BX of the following form are complex geodesics.

φ(ζ) = ((φ1j)
∞
j=1, (φ2j)

∞
j=1)

φij(ζ) = cij

(
ζ − αij

1− ᾱijζ

)βij
(

1− ᾱijζ

1− γ̄iζ

)2/pi
(

1− γ̄iζ

1− γ̄ζ

)2/r

where |αij| ≤ 1, |γi| < 1, |γ| < 1, βij is 0 or 1, and the following relations hold∑
j

|cij|piαij = γcpi

i (i = 1, 2)

cr1γ1 + cr2γ2 = γ

cr1(1 + |γ1|2) + cr2(1 + |γ2|2) = 1 + |γ|2

where

ci =

(
1

1 + |γi|2
∑

j

|cij|pi(1 + |αij|2)

)1/pi

(i = 1, 2).

The proof of this involves observing first that for x = (y, z) ∈ X with ‖x‖ = 1,

Nx = (‖y‖r−1Ny/‖y‖, ‖z‖r−1Nz/‖z‖)

with Ny/‖y‖ and Nz/‖z‖ given as in the proof of Proposition 5.4 for `p. To apply Proposi-
tion 5.3, take p(ζ) = |1− γ̄ζ|2 and

h(ζ) =

(
c̃ij(1− |αij|2)2−2/pi(1− γ̄iζ)

2/pi−2/r(1− γ̄ζ)2/r

(
ζ − αij

1− ᾱijζ

)1−βij

)
ij

where
c̃ij = cr−pi

i |cij|pi−2c̄ij (i = 1, 2; 1 ≤ j <∞).

We suspect that all complex geodesics inBX are of this form. Other examples of complex
geodesics in spaces which are direct sums of more than two summands of `p-type can also
be exhibited.

Remark 5.10 The case p = ∞ is excluded in all of the previous calculations because it is
well known that almost everything is different for `∞ (andL∞). Even for the unit ballB∞,2 =
{(z1, z2) ∈ C2 : maxi |zi| < 1} (polydisc) of `∞2 , many of the differences are apparent. The
only points of ∂B∞,2 that are complex extreme points are those where |z1| = |z2| = 1 and
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therefore the result of Vesentini [33] cited at the beginning of Section 3 shows that there are
many complex geodesics joining 0 to z = (z1, z2) if |z1| 6= |z2|. In fact, if |z2| < |z1|, the
normalized complex geodesics joining 0 to (z1, z2) are

φ(ζ) =

(
ζ
z1

|z1|
, g(ζ)

)
where g is any analytic function on D with g(0) = 0, g(|z1|) = z2 and supζ∈D |g(ζ)| < 1.
(This can easily be verified using the fact that the Kobayashi distance between x, y ∈ B∞,2

is given by maxi=1,2 ρ(xi, yi).) Thus we see non-uniqueness and discontinuity of complex
geodesics. Since B∞,2 is a homogeneous domain, for any pair of points x, y ∈ B∞,2, we can
find a biholomorphic automorphism F with F (0) = x (in fact F (z1, z2) = ((x1 − z1)/(1 −
x̄1z1), (x2 − z2)/(1− x̄2z2)) will do). Then for any normalized complex geodesic φ joining
0 and F−1(y), F ◦ φ is a normalized complex geodesic joining x and y.

The infinite dimensional case `∞ is somewhat similar to the finite dimensional one. We
state without proof the following result (B∞ is the unit ball of `∞).

A map φ = (φ1, φ2, . . .): D → B∞ is holomorphic if and only if each coordinate
function φj(ζ) is analytic.

One can check that φ is a complex geodesic if and only if either there exists j for which
φj is an automorphism of D or else there is a subsequence of (φj)j which converges to an
automorphism. This can be done directly or via a result of Gentili [15] who gives a necessary
and sufficient conditions for a holomorphic map φ:X → BX to be a complex geodesic in
the case when X = C(K) is the space of continuous functions on a compact Hausdorff
space K. The condition is that there exists k ∈ K so that ζ 7→ φ(ζ)(k) is an automorphism
of the unit disc. Since `∞ is the same as the space of continuous functions on the Stone-
Čech compactification of the integers, we can apply his result. There will be more than one
complex geodesic joining x, y ∈ B∞ unless |(xj − yj)/(1− x̄jyj)| is constant.

Similar remarks apply to c0. In this case there are no complex extreme points on the unit
sphere and there is more than one normalized complex geodesic joining every pair of points
in the unit ball.

6 TAUTNESS AND CURVATURE
In previous sections, we have used (for convex domains) convergence principles to establish
the existence of holomorphic mappings with certain extremal properties. These convergence
properties have been formalised for finite-dimensional domains and manifolds and certain
relationships established. In this section, we show that these results do not extend to arbitrary
Banach spaces, even for convex bounded domains and give a result on curvature of the
Kobayashi infinitesimal metric.
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We define hyperbolic, complete hyperbolic and taut domains in a Banach space. The first
two definitions are standard, while various versions of the third are possible.

Definition 6.1 A domain D in a Banach space X is called hyperbolic if KD induces the
original topology on D. If, moreover, (D, KD) is a complete metric space, we call D a
complete hyperbolic domain.

If D is hyperbolic, then KD is a distance on D (i.e. KD separates the points of D) and
the converse is true for finite dimensional domains (see [28, 19]). We do not know if the
converse is true for infinite dimensional Banach spaces. Harris [19, theorem 24] has proved
that a convex bounded domain in a Banach space is complete hyperbolic and Barth [3] has
proved that a convex domain in Cn which contains no complex lines is hyperbolic (and
indeed biholomorphically equivalent to a bounded domain). Again, we do not know if this
result extends to infinite dimensional Banach spaces.

Definition 6.2 A domain D in a Banach space X is taut if there exists a Hausdorff locally
convex topology τ on X such that every net (fα)α in H(D,D) contains either a compactly
divergent subnet or a subnet which converges with respect to τ , uniformly on compact subsets
of D, to some f ∈ H(D,D).

A net (fα)α∈Γ is compactly divergent if, given K compact in D and L a norm-compact
subset of D, there exists α0 ∈ Γ such that fα(K) ∩ L = ∅ for all α ≥ α0.

For D finite dimensional, τ has to be the same as the norm topology and we have

complete hyperbolic ⇒ taut ⇒ hyperbolic

(and the converses are both false [22, 2]). Also, for finite dimensional domains the unit disc
D can be replaced by any finite dimensional domain in the definition of tautness [1, 39].

Proposition 6.3 The unit ball BX of a Banach space X is taut if and only if X is isometri-
cally isomorphic to a dual space.

Moreover, ifX contains any bounded convex domainD which is taut (for a locally convex
topology τ ) then X is isomorphic to a dual Banach space and the topology τ is weaker than
the norm topology.

PROOF: We first suppose that BX is taut and that τ is a locally convex Hausdorff topology
associated with tautness.

Let (xα)α be a net in B̄X and for each α let fα(ζ) = ζxα for ζ ∈ D. Then fα is a
net in H(D, BX) and, since fα(0) = 0 for all α, it contains no compactly divergent subnet.
Therefore it must have a subnet (fβ)β which converges relative to τ , uniformly on compact
subsets of D, to some f ∈ H(D, BX). Since τ is a locally convex topology, it is easily seen
that f(ζ) = ζx for some x ∈ X . Because ‖f(ζ)‖ < 1 for all ζ ∈ D, we must have ‖x‖ ≤ 1
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and moreover xβ → x (with respect to τ ). This shows that (B̄X , τ) is compact. A result of
Ng [25] now implies that X is isometrically isomorphic to a dual space.

Conversely, suppose now that X is isometrically isomorphic to the dual of a Banach
space Y . Then B̄X is compact in the weak*- or σ(X, Y )-topology. Let (fα)α denote a net in
H(D, BX). Consider the Taylor series expansions

fα(ζ) =
∑

n

aα,nζ
n.

From the Cauchy formula, we have ‖aα,n‖ ≤ 1 for all α and n. By compactness of the
product of infinitely many copies of B̄X (for the product σ(X, Y )-topology) we can find a
subnet (fβ)β so that aβ,n → an ∈ B̄X for all n.

If ‖a0‖ = 1, then for any 0 < r < 1, fβ(0) = aβ,n 6∈ rB̄X if β is sufficiently large. Thus
‖fβ(0)‖ → 1. Now

tanh−1 ‖fβ(ζ)‖ = KX(fβ(ζ), 0)

≥ KX(fβ(0), 0)−KX(fβ(ζ), fβ(0))

≥ tanh−1 ‖fβ(0)‖ − ρ(ζ, 0)

(here we have used the distance decreasing property for the Kobayashi metric) shows that
‖fβ(ζ)‖ → 1 uniformly on compact subsets of D. Thus fβ is compactly divergent.

For the case ‖a0‖ < 1, let f(ζ) =
∑

n anζ
n. Since ‖an‖ ≤ 1 for all n, clearly f ∈

H(D, X). Fix y ∈ Y , 0 < r < 1 and ε > 0. Choose N so that
∑∞

n=N+1 r
n < ε. Then, by

considering power series, we obtain

sup
|ζ|≤r

|〈y, fβ(ζ)− f(ζ)〉| ≤
N∑

n=0

|〈y, aβ,n − an〉|+ 2
∞∑

n=N+1

rn‖y‖

≤
N∑

n=0

|〈y, aβ,n − an〉|+ 2ε‖y‖

for all β. Hence fβ → f with respect to σ(Y,X), uniformly on compact subsets of D.
Since fβ(ζ) ∈ BX for all ζ and β, it follows that f has values in B̄X . Since f(0) = a0 ∈

BX , f ∈ H(D, BX). This completes the proof that BX is taut when X is a dual space.
It remains to show the last part of the proposition. Suppose D is a taut bounded convex

domain in X . We can assume that 0 ∈ D by a translation. A simple argument based on
compactness of the unit circle shows that D0 = ∩θ∈Re

iθD is a bounded balanced convex
domain. By replacing the norm on X with an equivalent one, we can assume that D0 = BX .
The same argument as used at the beginning of the proof, together with the observation that
a map f : D → X of the form f(ζ) = ζx has its values in D if and only if it has values in
D0 = BX , shows that X is a dual space. Moreover the proof of Ng [25] implies that τ is
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weaker than the norm topology. He shows that X is the dual of a certain subspace Y ⊂ X∗

and that the identity map id: (B̄X , τ) → (B̄X , σ(X, Y )) is a homeomorphism. It follows that
id: (B̄X , ‖·‖) → (B̄X , τ) is continuous, and hence that id: (X, ‖·‖) → (X, τ) is continuous.

We remark that we could have appealed to this proposition for the proof of Proposi-
tion 5.5 in place of the more direct argument we used.

Example 6.4 For X = c0, BX is complete hyperbolic (by [19]) but not taut.

The second part of the proof of Proposition 6.3 can easily be modified to show that the
following are taut

(a) convex bounded domains in reflexive Banach spaces (for τ the weak topology);

(b) convex bounded domains in dual Banach spaces with the property that their norm clo-
sures are weak*-compact (τ the weak*-topology).

Proposition 6.5 If D is a convex bounded taut domain in a Banach space X , then D is
C-connected.

PROOF: Given two points x, y ∈ D, choose (fn)n inH(D,D) so that fn(0) = x, fn(sn) = y,
sn ∈ (0, 1) for all n and sn → s = tanhKD(x, y) as n→∞.

Since D is taut and fn(0) = x for all n, it follows that (fn)n has a τ -convergent subnet
(τ being the locally convex topology related to tautness of D). Let f ∈ H(D,D) denote the
limit of one such subnet. Clearly f(0) = x and we claim f(s) = y (which will show that f
is a complex geodesic by convexity and Proposition 1.2).

For r = (1 + s)/2, we have

fn(sn)− fn(s) =
sn − s

2πi

∫
|z|=r

fn(z)

(z − sn)(z − s)
dz.

Since D is bounded and sn → s, it follows that fn(sn) − fn(s) → 0 in norm (hence also in
the topology τ by Proposition 6.3) as n → ∞. Now if (fnα)α∈Γ is a subnet of (fn)n which
converges to f uniformly with respect to τ on compact subsets of D, then

fnα(snα)− f(s) = fnα(snα)− fnα(s) + fnα(s)− f(s) → 0

in the topology τ . Since fnα(snα) = y, it follows that f(s) = y.
We observe that one can similarly prove an infinitesimal version of Proposition 6.5: if D

is a convex bounded taut domain in a Banach space X , x ∈ D and 0 6= v ∈ X , then there
exists a complex geodesic f ∈ H(D,D) such that f(0) = x and f ′(0) = v/kD(x, v).
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Definition 6.6 If D is a bounded domain in a Banach space X , then the holomorphic sec-
tional curvature of the Kobayashi infinitesimal metric kD at a point x ∈ D in the (nonzero)
direction v ∈ X is

κk(x, v) = sup

{
4 log k2

D(f(z), f ′(z)) |z=0

−2k2
D(f(0), f ′(0))

: f ∈ H(rD,D), r > 0, f(0) = x, f ′(0) = v

}
.

Since kD may not even be continuous in general,4 above denotes the generalised Lapla-
cian. This is defined (motivated by [21], see [4]) for upper semicontinuous functions u with
values in [−∞,∞) (but not identically −∞) at points z with u(z) 6= −∞ by

4u(z) = 4 lim inf
r→0+

1

r2

{
1

2π

∫ 2π

0

u(z + reiθ) dθ − u(z)

}
.

At a local maximum point z, 4u(z) ≤ 0 and at a finite local minimum 4u(z) ≥ 0.
The following result for finite-dimensional domains is due to Wong [38], Burbea [4] and

Suzuki [30, 31].

Proposition 6.7 If D is a taut bounded convex domain in a Banach space X , then

κk(x, v) = −4 (x ∈ D, 0 6= v ∈ X).

PROOF: We will use the fact that this result is true for the unit disc D (see for instance
[10, §3.4]) — in fact every suitable function f attains the supremum in Definition 6.6 when
D = D and the supremum is −4.

For general D and f as in the definition of κk(x, v), let λf (z) = c2D(f(z), f ′(z)) (which
coincides with k2

D(f(z), f ′(z)) by convexity of D). By Montel’s theorem, we can find g ∈
H(D,D) such that g(x) = 0 and

cD(x, v) = |g′(x)(v)| = cD(g(x), g′(x)(v)) = α(g(x), g′(x)(v)).

Let β(z) = α2(g(f(z)), g′(f(z))(f ′(z))) for z ∈ rD. Observe that

β(z) ≤ c2D(f(z), f ′(z)) = λf (z)

and β(0) = α2(g(x), g′(x)(v)) = c2D(x, v) = λf (0). Since v 6= 0 and D is bounded, there is
a neighbourhood of 0 where β(z) does not vanish. Hence log(λf/β) has a local minimum at
the origin and therefore

4 log
λf

β

∣∣∣∣
z=0

= 4 log λf (0)−4 log β(0) ≥ 0,

where we have used the fact that log β is twice continuously differentiable (and hence the
lim inf in the definition of 4 log β is a limit). It follows that

4 log λf (0)

−2λf (0)
≤ 4 log β(0)

−2β(0)
= −4
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and hence that κk(x, v) ≤ −4.
Since D is taut and bounded, there exists a complex geodesic f ∈ H(D,D) such that

f(0) = x and f ′(0) = v/kD(x, v) (by the infinitesimal version of Proposition 6.5). For this
f we have

k2
D(f(z), f ′(z)) = α2(z, 1) =

1

1− |z|2

(see Proposition 1.2) and the one variable result shows that f attains the upper bound of −4.

Corollary 6.8 If X is a dual Banach space, then the Kobayashi infinitesimal metric kX on
BX has constant holomorphic sectional curvature −4.
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(1978) 555–559.
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d’applications holomorphes, Sém. P. Lelong, P. Dolbeault, H. Skoda 1983/84, Lecture
Notes in Mathematics 1198, Springer-Verlag (1986) 244–260.

[38] B. Wong, On the holomorphic curvature of some intrinsic metrics, Proc. Amer. Math.
Soc. 65 (1977) 57-61.

[39] H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967) 193–233.

This paper appeared in Progress in Functional Analysis, K.D. Bierstedt, J. Bonet, J.
Horváth & M. Maestre (Eds.) pp 333–365, Elsevier (1992) .


