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Abstract

Let g be a fixed-point free biholomorphic self-map of a bounded symmetric domain B. It is

known that the sequence of iterates (gn) may not always converge locally uniformly on B even,

for example, if B is an infinite dimensional Hilbert ball. However, g = ga ◦T, for a linear isometry

T , a = g(0) and a transvection ga, and we show that it is possible to determine the dynamics

of ga. We prove that the sequence of iterates (gna ) converges locally uniformly on B if, and only

if, a is regular, in which case, the limit is a holomorphic map of B onto a boundary component

(surprisingly though, generally not the boundary component of a
‖a‖ ). We prove (gna ) converges to

a constant for all non-zero a if, and only if, B is a complex Hilbert ball. The results are new even

in finite dimensions where every element is regular.

Introduction

In 1926 Wolff [25] and Denjoy [5] proved that if g is a holomorphic fixed-point

free self-map of ∆, then its iterates (gn) converge locally uniformly on ∆ to a

unimodular constant. This was first generalised to the finite dimensional Hilbert

ball by Hervé [7] in 1963, and then again, by others, two decades later [18], [20].

Shortly afterwards, the result was shown to fail for the infinite dimensional Hilbert

ball [24] even for biholomorphic fixed-point free self-maps. It is also easy to see

that it fails for other bounded symmetric domains, as shown for the bidisc ∆×∆ in

Example 1 of [4]. It may therefore appear hopeless to consider the iterates of such

maps on arbitrary bounded symmetric domains, which is, nonetheless, the purpose

of this paper.

Let Z be a JB∗-triple with open unit ball B. As is long known [11] B is a

bounded symmetric domain and every bounded symmetric domain can be realised

in this way. Let g be a biholomorphic self-map of B which has no fixed point in

B. Then g has a unique decomposition into linear and non-linear parts, and the

non-linear part is tractable, namely, we can trace its iterates. We recall that the
1
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group, G, of biholomorphic automorphisms of B, has the form [11] G = PK = KP ,

where K is all linear elements of G (equivalently, all linear isometries of Z [16]),

and P = exp(p), where p is the Lie algebra generated by the quadratic vector

fields, Xα(z) = (α− {z, α, z}) ∂∂z on Z. In other words, each g ∈ G may be written

g = ga ◦ T , where a = g(0), T ∈ K, and ga ∈ P is called a transvection.

We show that the local uniform convergence properties of the sequence of iterates

(gna ), unlike those of (gn), are good, and it is our aim here to establish exactly

the dynamics of (gna ). We use results on the boundary properties of bounded

symmetric domains [17] to reduce the local uniform convergence properties of (gna )

to the norm convergence properties of the sequence (gna (0)) in Z and we can thereby

locate all accumulation points of (gna ) (with respect to the topology of local uniform

convergence on B) as holomorphic maps of B onto certain boundary components.

We present our main result, noting that if Z is finite rank, in particular if it is finite

dimensional, then every element is (what is known as) regular, cf. section 3 of this

paper, giving a much simpler statement than below.

Theorem 0.1. Let Z be a JB∗-triple with open unit ball B and a ∈ B.

The sequence of iterates (gna ) has an accumulation point, with respect to the

topology of local uniform convergence on B if, and only if, a is regular. Moreover, if

a is regular, then the iterates (gna ) converge locally uniformly on B to a holomorphic

map ge : B → Ke, where Ke is the (holomorphic) boundary component of e and e

is the support tripotent of a.

We note that the limit point ge is not in general, even in finite dimensions, a

constant map, and more crucially, its image, the boundary component Ke, may

also not contain the point a
‖a‖ , for a 6= 0. In fact, the following result shows that

while, as one might expect, the above simplifies greatly in the case of the Hilbert

ball, such simplification actually characterises the Hilbert ball within the class of

all bounded symmetric domains.

Theorem 0.2. Let Z be a JB∗-triple with open unit ball B. The following are

equivalent.

(i) (gna ) converges locally uniformly on B to a constant map, for all non-zero

a ∈ B.
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(ii) Z is (isometrically J∗-isomorphic to) a complex Hilbert space.

We note that the results are new even in finite dimensions. For a survey of the

classical case B = ∆ we refer to [3].

1. Preliminaries

Throughout ∆ = {z ∈ C : |z| < 1}, H will denote a complex Hilbert space, L(X,Y )

the space of all continuous linear maps from a complex Banach spaceX to a complex

Banach space Y , L(X) = L(X,X) and GL(X) is all invertible elements in L(X).

1.1. JB∗-triples

Definition 1.1. A JB∗-triple is a complex Banach space Z with real tri-linear

mapping {·, ·, ·} : Z × Z × Z → Z satisfying

(i) {x, y, z} is complex linear and symmetric in x and z, and is complex anti-

linear in y;

(ii) the map z 7→ {x, x, z}, denoted x�x, is Hermitian, σ(x�x) ≥ 0 and

‖x�x‖ = ‖x‖2 for all x ∈ Z, where σ denotes the spectrum;

(iii) for all a, b, x, y, x ∈ Z the Jordan triple identity holds, namely,

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}}.

The triple product is continuous [6], namely, ‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖. JB∗-

triples that are also Banach dual spaces are known as JBW ∗-triples, and have

been much studied. It is known [11] that every bounded symmetric domain is

biholomorphically equivalent to the open ball of a JB∗-triple and vice versa.

Example 1.2. (i) H is a JB∗-triple for product

{x, y, z} =
〈x, y〉z + 〈z, y〉x

2

(ii) If X is a locally compact Hausdorff space, then C0(X), the space of all

continuous C-valued functions which vanish at infinity, is a JB∗-triple for

{x, y, z} = xyz.

All C∗-algebras, JB∗-algebras and J∗-algebras are JB∗-triples, so the class of

triples is large and interesting. Since the triple product encodes the holomorphic
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structure of B (for example, the Kobayashi metric on B [21] and [22]), it is a key

tool in the study of holomorphic maps on all of these spaces.

Let Z be a JB∗-triple with open unit ball B. The most important linear maps

on Z are the Bergman operators B(x, y) = I − 2x�y + Q(x)Q(y) ∈ L(Z) as they

play a central role in the geometry of B. Here x�y ∈ L(Z) is the map z 7→ {x, y, z}

and Q(x) maps z 7→ {x, z, x} so that Q(x)Q(y) ∈ L(Z). We note that for all

x ∈ B, σ(B(x, x)) > 0 and Bx := B(x, x)
1
2 exists in the sense of the holomorphic

functional calculus on L(Z) [13].

1.2. Tripotents and Peirce decompositions

A concept of orthogonality exists in Z and we say x, y ∈ Z are orthogonal, x⊥y, if

x�y = 0 (or equivalently [19] if y�x = 0). Analogues of idempotents for an algebra

also exist in the form of tripotents, where e ∈ Z is a tripotent if {e, e, e} = e. Every

tripotent e induces a Peirce splitting Z = Z1(e)⊕Z 1
2
(e)⊕Z0(e) where Zk(e) is the

k eigenspace of e�e. A tripotent e is said to be maximal if Z0(e) = 0 and said to be

minimal if Z1(e) = Ce. It is known that for JB∗-triples real and complex extreme

points of the closed unit ball coincide and are precisely the set of all maximal

tripotents.

Z is said to have rank r if the cardinality of every set of non-zero pairwise

orthogonal tripotents is ≤ r and there is at least one set of cardinality r. We say

Z is finite rank if r < ∞. Of course, if Z is finite dimensional then it is finite

rank. We say a ∈ Z is algebraic if there exists a finite family of pairwise orthogonal

tripotents e1, ..., er and λ1, λ2, · · · , λr ∈ C such that a = λ1e1 + · · · + λrer. For

a 6= 0 algebraic, the decomposition can be chosen so that each ek is non-zero and

λ1 = ‖a‖ > λ2 > · · · > λr > 0. We refer to e = e1 + · · · + er as the support

tripotent of A and write e = supp(a) (supp(0) = 0). If Z is finite rank then every

a ∈ Z is algebraic. We refer to [1] and [15] for additional details.

1.3. Spectral Theory

A well developed spectral theory exists for JB∗-triples, as follows. Given a ∈ Z, let

Za denote the smallest closed subtriple of Z containing a. Then there is a unique

compact subset S = −S of R such that (i) 0 is not isolated in S and (ii) there is a

unique triple isomorphism from Za onto
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C−(S) := {f ∈ C(S) : f(−s) = −f(s) ∀s ∈ S} such that a becomes the function

a(s) ≡ s on S. Letting S+ = {s ∈ S : s > 0}, the following are triple isomorphisms

Za ∼= C−(S) ∼= C0(S+), where we identify a with the map a(s) = s ∀s ∈ S and

elements of C0(S+) are identified with maps in C−(S) by extension in the obvious

way. Proposition 3.5 of [15] gives all necessary details. The set S, denoted Sp(a),

is called the (triple) spectrum of a (Sp(0) = ∅) and we write rank(a) :=dim(Za).

Using this an odd functional calculus exists on Z [15]. We note that a⊥b gives

Za⊥Zb (this follows from the Jordan triple identity and double induction on odd

powers of a and b). Moreover, as the direct product Za × Zb with component-wise

triple product and maximum norm is a JB∗-triple, then a⊥b implies that the map

Za × Zb → Z : (x, y) 7→ x+ y is an injective triple homomorphism and is hence an

isometry [16] giving ‖a + b‖ = max{‖a‖, ‖b‖}. In particular, a⊥b for a, b ∈ B also

means a+ b ∈ B.

1.4. Automorphism Group

The structure of the group, G, of all biholomorphic automorphisms of B is long

known. We refer to section 3 of [14] for details. G is a (Banach) Lie group whose

Lie algebra g = k ⊕ p consists of all complete holomorphic vector fields on B, with

k = aut(Z) being all triple derivations of Z and

p = {Xα : α ∈ Z}, where Xα(z) = (α− {z, α, z}) ∂
∂z
.

In particular, for each X ∈ g , the map t 7→ exp(tX) is a 1-parameter subgroup

of G. At the group level we have the decomposition G = KP = PK, where

K = Aut(Z) is the subgroup of all surjective linear isometries (or equivalently,

all triple isomorphisms) of Z and P = exp(p) is a real submanifold, though not

a subgroup, of G. Each g ∈ G therefore has a unique representation g = ga ◦ T ,

where T ∈ K, a = g(0), and ga ∈ P , called a transvection, is given by

ga(z) = a+Ba(I + z�a)−1z, z ∈ B

where Ba := B(a, a)
1
2 ∈ GL(Z). Clearly g0 = I.

Moreover, ga = exp(Xα), where α = tanh−1(a) is defined in terms of the odd

functional calculus on Z (and α and a generate the same subtriple of Z).
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Example. (i) If B = ∆ and a ∈ ∆ then ga(z) = z+a
1+az , z ∈ ∆, is the

classical Möbius map. To distinguish the case of ∆ throughout, we will

write ta for ga whenever a ∈ ∆. It is well known, cf. [3], that for a ∈ ∆\{0},

tna converges locally uniformly on ∆ to the constant map a
|a| and hence,

in particular, limn t
n
a(0) = a

|a| . We make repeated use of the fact that

limn t
n
a(0) = 1 for all a ∈ (0, 1).

(ii) If B = BH is a complex Hilbert ball then for a 6= 0 in B

ga(z) =
(
Pa +

√
1− ‖a‖2Qa

)( z + a

1 + 〈z, a〉

)
, z ∈ B

where Pa is the orthogonal projection onto the subspace Ca andQa = I−Pa.

1.5. Boundary Components

The boundary components of a bounded symmetric domain B are classified [17] in

terms of holomorphic maps called boundary transvections.

We recall that A ⊂ B, A 6= ∅ is a (holomorphic) boundary component of B

if A is minimal with respect to the fact that either f(∆) ⊂ A or f(∆) ⊂ B \ A,

∀f : ∆ → Z holomorphic with f(∆) ⊂ B. We denote the boundary component of

B containing a as Ka.

For c ∈ ∂B, the local uniform limit of ga as a ∈ B approaches c, namely

lima→c ga, exists as a holomorphic map : B → Z, is denoted gc and called a bound-

ary transvection. Such maps classify the boundary components of B containing

tripotents, namely, if e ∈ Z is a tripotent then

Ke = ge(B) = e+B0(e), where B0(e) = B ∩ Z0(e)

and also Ke = ga(B), for all a ∈ Ke. Of course, if e = 0 then K0 = B and

this is the unique open boundary component of B. We note that for c ∈ ∂B,

the boundary transvection gc, unlike ga for a ∈ B, is neither biholomorphic nor

injective in general. The map (z, a) 7→ ga(z) is, however, a continuous map on

B × B \ (∂B × ∂B). We refer to [17], in particular Theorem 2.1 and Proposition

4.3, for proofs and details of all results in this subsection.
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2. Results: Algebraic Elements

Let Z be an arbitrary JB∗-triple with open unit ball B. For holomorphic functions

on B, convergence is understood throughout to mean local uniform convergence on

B. We note that on G, the automorphism group of B, this topology coincides with

uniform convergence on subsets lying strictly inside B, cf. Theorem 3.1 of [10].

Let a ∈ B. We begin by examining the iterates, gna , of ga. Fix n ∈ N.

As ga = exp(Xα), where α = tanh−1(a) and since the map t 7→ exp(tXα) is a

1-parameter subgroup of G then (recall that P is not a subgroup of G)

gna = (exp(Xα))n = exp(nXα) = exp(Xnα) ∈ P

so that gna = gcn , for cn ∈ B, and evaluating at 0 gives gna (0) = cn.

In other words, for all a ∈ B and n ∈ N

gna = ggna (0).(2.1)

This simple identity is crucial, since in light of section 1.5 above, it immediately

simplifies the process of finding accumulation points of (gna ) with respect to the

topology of local uniform convergence on B, by allowing us instead to focus on

finding accumulation points of the sequence (gna (0)) in Z with respect to the norm

topology. To this end, it is important to notice that the sequence (gna (0)) lies

entirely in the JB∗-subtriple, Za, generated by a. If now Za is just Ca, then we are

already almost done. Although this is generally not the case, it is true for Hilbert

spaces, where Za = Ca, for all a in H. For Hilbert space enthusiasts therefore, who

may wish to forgo Jordan theory, we present this separately.

Theorem 2.1. Let H be a complex Hilbert space with open unit ball B, a ∈

B\{0}. The sequence of iterates (gna ) converges locally uniformly on B to the con-

stant map a
‖a‖ .

Proof. For e ∈ ∂B and λ, µ ∈ ∆ then gλe(µe) =
(
λ+µ

1+λµ

)
e = tλ(µ)e, where tλ

is the Möbius transformation on the disc. By induction gnλe(0) = tnλ(0)e, for n ∈ N.

Fix a ∈ B\{0}. Then gna (0) = gn‖a‖e(0) = tn‖a‖(0)e, for e = a
‖a‖ ∈ ∂B. Since

(tn‖a‖(0)) converges to 1, (gna (0)) converges in norm to a
‖a‖ and hence, as in section
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1.5, (ggna (0)) converges locally uniformly on B to the boundary transvection g a
‖a‖
. As

g a
‖a‖

(B) = K a
‖a‖

and, since every point in ∂B is complex extreme, K a
‖a‖

= { a
‖a‖},

so g a
‖a‖

is the constant map a
‖a‖ . The result follows from (2.1).

Comment. The following properties of Hilbert spaces are key to the above proof.

1. gna (0) ∈ Ca, for all n ∈ N (this ensures that for a 6= 0 a limit, g a
‖a‖

, exists).

2. Every point on ∂B is extreme, namely, B is strictly convex (this ensures

that the limit, g a
‖a‖

, is constant).

While property 2 does not hold for triples of rank > 1, we can ask if property

1 generalises to some such triples. The answer is negative, as the following shows

that properties 1 and 2 are equivalent.

Proposition 2.2. Let Z be a JB∗-triple with open unit ball B. The following

are equivalent.

(i) Z is (isometrically J∗-isomorphic to) a complex Hilbert space.

(ii) B is strictly convex.

(iii) Every e ∈ ∂B is a tripotent (and is then automatically minimal and maximal

at the same time).

(iv) For all a ∈ B, Za ∼= Ca.

(v) For all a ∈ B, gna (0) ∈ Ca. [Note that for a = 0, ga = I.]

Proof. Implications (i) ⇔ (ii) ⇔ (iii) ⇔ (iv)⇒ (v) are straightforward.

(v) ⇒ (iii): Let e ∈ ∂B. It suffices to prove that e is a tripotent. Let a = e
2 ∈ B.

By assumption g2a(0) = ga(a) ∈ Ca. We may assume that a ∈ C0(S+) is the map

a(s) ≡ s and ga(z) = z+a
1+az , z ∈ C0(S+). Then g2a(0) = 2a

1+a2 = λa, for some real

constant λ > 0. This implies S+ must be a singleton and therefore e = a
‖a‖ is a

tripotent and we are done.

We return to arbitrary JB∗-triples. For the space of holomorphic functions on

B, we note that nets, rather than sequences, are required to determine the topology.

In particular, the set of all accumulation points of (gna ) with repect to the topology

of local uniform convergence on B is precisely the set of limit points of all its

locally uniformly convergent subnets. The following result shows that for (gna ) this

is conveniently the same as the set of all its (locally uniform) subsequential limits.
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Theorem 2.3. Let Z be a JB∗-triple with open unit ball B and a ∈ B. The set of

accumulation points of (gna ) with respect to the toplogy of local uniform convergence

on B is

{gc : c ∈ Γa},

where Γa is the set of all subsequential limits of (gna (0)) in Z with respect to the

norm topology. In particular, for (gna ) the set of accumulation points is exactly the

set of its subsequential limits.

Proof. Let h be an accumulation point of (gna ), namely, there is a subnet (nα)α

of N such that gnαa →
α
h locally uniformly on B. In particular then, gnαa (0)→

α
h(0)

in Z. From (2.1) gnαa = ggnαa (0) and therefore (section 1.5) gnαa = ggnαa (0) →
α
gh(0)

locally uniformly on B. Uniqueness of limits gives h = gh(0). Since the topology on

Z is determined by sequences, the set of limits points of all (convergent) subnets

of (gna (0)) is the same as the set of all its subsequential limits. In other words,

h(0) ∈ Γa and h = gh(0) ∈ {gc : c ∈ Γa}. On the other hand, let c ∈ Γa, that is,

c = limk g
nk
a (0). As above gnka = ggnka (0) →

k
gc locally uniformly on B, completing

the proof.

Since for a tripotent e, direct calculation gives gλe(µe) = tλ(µ)e, λ, µ ∈ ∆, the

next result follows exactly as in Theorem 2.1.

Lemma 2.4. Let e be a tripotent and λ ∈ ∆. Then gnλe = gtnλ(0)e for n ∈ N and

(gnλe) converges locally uniformly on B to the boundary transvection g λ
|λ| e

, if λ 6= 0.

Our next motivation comes from the fact that if a⊥b then ga is orthogonal to gb

in the sense that

ga ◦ gb = gb ◦ ga so that ga+b = ga ◦ gb,

which will allow us to extend Lemma 2.4 above to finite linear combinations of

tripotents, namely, to algebraic elements of Z. While this orthogonality result may

be part of the folklore we supply a proof for completeness. (The following result for

n = 1, a tripotent e and v⊥e is used in the proof of Proposition 4.3 of [17], though

a proof is not given there.)

Lemma 2.5. Let a, b ∈ B be orthogonal. Then ga+b = ga ◦ gb. In particular, ga

and gb commute.
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Proof. Let a, b ∈ B be orthogonal. As in section 1, ga = exp(Xα), gb =

exp(Xβ), for α = tanh−1(a), β = tanh−1(b) and Xα is the vector field, Xα(z) =

(α− {z, α, z}) ∂
∂z . Since tanh−1(t) =

∑∞
n=0

t2n+1

2n+1 is odd, a⊥b implies tanh−1(a +

b) = tanh−1(a) + tanh−1(b) = α + β and α⊥β. As [Xα, Xβ ] = Xα�β−β�α, α⊥β

implies [Xα, Xβ ] = 0, which gives exp(Xα +Xβ) = (expXα) ◦ (expXβ). Therefore

ga+b = exp(Xtanh−1(a+b)) = exp(Xα+β) = exp(Xα+Xβ) = (expXα)◦(expXβ) =

ga ◦ gb. In particular ga ◦ gb = gb ◦ ga.

The above lemmata combine to show that for algebraic elements a the dynamics

of ga on B are determined entirely by its support tripotent e.

Theorem 2.6. Let Z be a JB∗-triple, a ∈ B be algebraic and e = supp(a). Then

(gna ) converges locally uniformly on B to the holomorphic map ge, where ge(B) is

the boundary component, Ke, of e.

Proof. The case a = 0 is trivial, as ga = ge = I. Let a ∈ B\{0} be algebraic,

with a = λ1e1+...+λrer, where ‖a‖ = λ1 > ... > λr > 0, and e1, ..., er are mutually

orthogonal tripotents. Fix n ∈ N. Then

gna = gnλ1e1 ◦ · · · ◦ g
n
λrer by Lemma 2.5

= gtnλ1 (0)e1
◦ · · · ◦ gtnλr (0)er by Lemma 2.4

= gtnλ1 (0)e1+···+t
n
λr

(0)er by Lemma 2.5 again.

Since tnλi(0)→
n

1, 1 ≤ i ≤ r, limn t
n
λ1

(0)e1 + · · ·+ tnλr (0)er = e so that, as before, gna

converges locally uniformly on B to ge and we are done.

Comments. 1. If Z is finite rank then all elements in Z are algebraic and,

of course, every finite dimensional JB∗-triple is finite rank.

2. If Z is a JBW ∗-triple then the algebraic elements are dense, cf. [15] section

2.

3. Every element a ∈ Z is algebraic if, and only if, Z has the Radon-Nikodym

property, [2].

Theorem 2.6 however merits a much closer look, even in finite dimensions. The

transvection ge maps B onto the holomorphic boundary component, Ke, of e. This
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yields our first major surprise for, as the following examples show, the boundary

components of e and a
‖a‖ are generally different, so that Theorem 2.6 (and a later

Theorem 3.1) diverges from the Hilbert space result in both expected (see (i) below)

and unexpected (see (ii) and (iii) below) ways.

(i) (gna ) does not necessarily converge to a constant map. See Example 2.7

below.

(ii) Even if (gna ) does converge to a constant, that constant is not generally a
‖a‖ .

In fact, that constant is not necessarily in K a
‖a‖

. See Example 2.8 below.

(iii) Where it exists, the limit of (gna ) does not generally map into the boundary

component K a
‖a‖

. See Example 2.7 below.

Example 2.7. Let Z be C3 with `∞ norm, ‖(z1, z2, z3)‖ = max1≤i≤3 |zi|, so

B = ∆3. Consider the rank 2 element a = ( 1
2 ,

1
4 , 0) ∈ B. Then

a =
1

2
e1 +

1

4
e2, e1 = (1, 0, 0), e2 = (0, 1, 0) and e = supp(a) = e1 + e2 = (1, 1, 0)

so that ge(B) = Ke = 1× 1×∆. On the other hand,

a

‖a‖
= e1 +

1

2
e2 and K a

‖a‖
= Ke1 = 1×∆×∆.

Clearly Ke ∩K a
‖a‖

= ∅. Note that gna (z) = (tn1
2

(z1), tn1
4

(z2), z3) with z = (z1, z2, z3),

where tn1
2

, tn1
4

are Möbius maps on ∆ that converge locally uniformly on ∆ to 1. So

(gna ) converges locally uniformly on B to ge where ge(z) = (1, 1, z3).

Example 2.8. Let Z be C2 with `∞ norm, so B = ∆2. Take

a =

(
1

2
,

1

4

)
=

1

2
e1+

1

4
e2,where e1 = (1, 0), e2 = (0, 1) and e = supp(a) = e1+e2 = (1, 1).

Here e is a complex extreme point, so Ke = {e} and ge is the constant map e. On

the other hand

a

‖a‖
=

(
1,

1

2

)
= e1 +

1

2
e2 and K a

‖a‖
= K(1,0) = 1×∆.

Of course, (gna ) converges locally uniformly on ∆2 to the constant map e.

The following proposition clarifies the situation.
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Proposition 2.9. Let a ∈ B be algebraic and e = supp(a). If a 6= 0 then

K a
‖a‖

= Ke if, and only if,
a

‖a‖
is a tripotent.

Proof. Let a ∈ B\{0} be algebraic and e = supp(a). From section 1.5, K a
‖a‖

=

Ke if, and only if, a
‖a‖ ∈ Ke = ge(B) = e + B0(e), B0(e) = Z0(e) ∩ B. In other

words, K a
‖a‖

= Ke if, and only if, v := e − a
‖a‖ ∈ B0(e). Write a = λ1e1 +

· · · + λrer, ‖a‖ = λ1 > λ2 > ... > λr > 0 and e = e1 + · · · + er = supp(a).

Then v =
(

1− λ2

λ1

)
e2 + · · · +

(
1− λr

λ1

)
er. Clearly v ∈ B, so v ∈ B0(e) if, and

only if, v�e = 0. Since v�e =
(

1− λ2

λ1

)
e2�e2 + · · · +

(
1− λr

λ1

)
er�er, we have

v ∈ B0(e) ⇔ λi
λ1

= 1, i = 2, ..., r ⇔ ‖a‖ = λ1 = λ2 = ... = λr ⇔ a = ‖a‖e ⇔
a
‖a‖ = e⇔ a

‖a‖ is a tripotent and we are done.

From Proposition 2.2 every element of Z is a scalar multiple of a tripotent if, and

only if, Z is a complex Hilbert space. Theorem 2.6 and Proposition 2.9 therefore

yield the following (a precursor to a later result (Theorem 3.4) for arbitrary triples).

Corollary 2.10. Let Z be a JB∗-triple such that every element is algebraic.

Then (gna ) converges locally uniformly on B to a constant, for all non-zero a in B,

if, and only if, Z is a complex Hilbert space.

3. Results: Regular Elements

We now use spectral theory to extend Theorem 2.6 above to those elements a of Z,

for which the spectrum, Sp(a), does not contain 0. In [15, Lemma 4.1] 0 /∈ Sp(a) is

shown to be equivalent to several previously studied concepts of regularity, namely,

0 /∈ Sp(a)⇔ a is regular⇔ a is strongly regular⇔ a has a generalized inverse. For

this reason, if 0 /∈ Sp(a) we simply refer to a as being regular. Since 0 is never an

isolated point of the spectrum, it follows that every algebraic element is regular. In

particular, 0 is regular as Sp(0) = ∅. As noted in section 1, we have, for S = Sp(a)

and S+ = {s ∈ S : s > 0}, triple isomorphisms Za ∼= C−(S) ∼= C0(S+), where a is

identified with the the map a(s) = s,∀s ∈ S+.

The concept of support tripotent also exists for regular elements of Z. Let a ∈ Z

be regular and S = Sp(a). Since 0 /∈ S the map e(s) = 1,∀s ∈ S+ defines a tripotent

e in Za ∼= C0(S+), which we refer to as the support tripotent of a, written e =
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supp(a). Note that since 0 /∈ S, S+ is, in this case, compact and C0(S+) ∼= C(S+).

We refer to Lemma 3.2 of [12] for properties of regular elements and to [1], [9] and

[23] for complementary details. We also note that every element of Z is regular if,

and only if, Z is finite rank [12]. Theorem 2.6 can now be generalised.

Theorem 3.1. Let Z be a JB∗-triple and a ∈ B be regular. Then (gna ) converges

locally uniformly on B to the holomorphic map ge, where e = supp(a) and ge(B) =

Ke.

Proof. The case a = 0 is trivial. Let a ∈ B \ {0} be regular and e = supp(a).

Let S = Sp(a), so that S+ ⊂ (0, ‖a‖) ⊂ (0, 1). For z ∈ Za ∼= C(S+), ga(z) = z+a
1+az

hence

ga(z)(s) =
z(s) + a(s)

1 + a(s)z(s)
= ta(s)(z(s)) = ts(z(s)) for s ∈ S+.

By induction therefore

gna (0)(s) = tns (0) for s ∈ S+, n ∈ N.(3.1)

Now (tns (0))n converges to 1 for all s ∈ S+ and this is equivalent to saying that

(gna (0))n converges pointwise to e on S+. On the other hand, it is easy to see by

induction and (3.1) that (gna (0))n is monotone increasing on S+ and therefore, by

Dini’s theorem, (gna (0))n converges uniformly on S+ to e. In other words, e =

limn g
n
a (0) in C(S+) and hence in Z. As before gna = ggna (0) then converges locally

uniformly on B to the holomorphic map ge and we are done.

A further look at the above proof reveals ge as the only possible accumulation

point of (gna ).

Theorem 3.2. Let Z be a JB∗-triple and a ∈ B. The set of (local uniform)

accumulation points of the sequence of iterates (gna ) is non-empty if, and only if, a

is regular. In particular, (gna ) converges locally uniformly on B if, and only if, a is

regular.

Proof. Theorem 3.1 gives one direction. In the opposite direction, suppose

that an accumulation point, h = limα g
nα
a , exists for the topology of local uniform

convergence on B. In particular then h(0) = limα g
nα
a (0) ∈ Za ∼= C0(S+), where
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S = Sp(a) and S+ = {s ∈ S : s > 0}. From (3.1) h(0)(s) = limα g
nα
a (0)(s) =

limα t
nα
s (0) = 1 for all s ∈ S+. Since h(0) ∈ C0(S+) this means 0 is not an

accumulation point of S and, as 0 is never isolated in S, cf. section 1.3, it follows

that 0 /∈ S. Hence a is regular and, by Theorem 3.1, h = ge for e = supp(a).

Theorems 3.1 and 3.2 therefore tell us that the only possible (local uniform)

accumulation point of (gna ) is the holomorphic map ge, where e = supp(a), and if

a is not regular then such a support tripotent does not exist in Z. So our results

above are somehow best possible.

The proofs of Theorems 3.1 and 3.2 also contain the proof of the following alter-

native characterisation of regularity.

Corollary 3.3. Let Z be a JB∗-triple with open unit ball B and a ∈ B. Then

a is regular if, and only if, limn g
n
a (0) exists in Z. In particular, a has a support

tripotent in Z if, and only if, limn g
n
a (0) exists in Z.

Since Z∗∗ is a Banach dual space (a JBW∗-triple) its closed unit ball is weak∗-

compact. This suggests a way to generalise the concept of support tripotent to

arbitrary (non-regular) elements of Z by considering limn g
n
a (0) in Z∗∗, rather than

in Z, and looking for weak∗-accumulation points there. This has already been done

in [1]. (We note that the maps ga are not, in general, weak∗-weak∗ continuous [8].)

Our final result extends Corollary 2.10 and is further evidence, if any is still

required, that the study of the dynamics of a holomorphic map on the Hilbert ball

does not generalise in an insightful way to the other bounded symmetric domains,

as the strict convexity of the Hilbert ball makes it a natural outlier in this class.

Theorem 3.4. Let Z be a JB∗-triple. The following are equivalent.

(i) (gna ) converges locally uniformly on B to a constant map, for all non-zero

a ∈ B.

(ii) Z is (triple isomorphic to) a complex Hilbert space.

Proof. (ii)⇒(i) is Theorem 2.1.

(i)⇒ (ii): Assume (i) and let a ∈ B\{0}. By Theorem 3.2, a is regular and by
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Theorem 3.1, (gna ) then converges to ge, e = supp(a). Since (i) holds, ge must be

a constant map, c say. Then Ke = ge(B) = {c} which happens if, and only if,

e = c is complex extreme, that is, e is a maximal tripotent. Therefore every non-

zero tripotent is maximal. On the other hand, it is easy to see that every non-zero

tripotent in Z is maximal only if every non-zero tripotent is also minimal and hence

all non-zero tripotents are rank 1. In particular e = supp(a) is rank 1, so a = ‖a‖e.

Proposition 2.2 now gives the result.

The author wishes to thank the referee for helpful comments and suggestions.
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