Solutions 3

3.1 Let \(x \in U \). Since \(U \) is open, \(x \) is an interior point of \(U \). Therefore there exists \(\rho > 0 \) such that \(B(x; \rho) \subset U \). Since \(U \subset A \), \(B(x; \rho) \subset A \). Therefore \(x \) is an interior point of \(A \). Therefore \(U \subset \text{Int}(A) \).

3.2 Suppose that \(a \in A \). Since \(A \) is an open set, there exists \(\rho_a > 0 \) such that \(B_a = B(a; \rho_a) \subset A \).

Since \(a \in B_a \),
\[
A \subset \bigcup \{B_a : a \in A\} \tag{1}
\]

Since \(B_a \subset A \),
\[
\bigcup \{B_a : a \in A\} \subset A \tag{2}
\]

Statements (1) and (2) imply that
\[
A = \bigcup \{B_a : a \in A\}.
\]

3.3 (i) Suppose that \(x \in \text{Int}(A \cap B) \). Then there exists \(\rho > 0 \) such that \(B(x; \rho) \subset A \cap B \). Therefore \(B(x; \rho) \subset A \) and \(B(x; \rho) \subset B \). Therefore \(x \in \text{Int}(A) \) and \(x \in \text{Int}(B) \), that is, \(x \in \text{Int}(A) \cap \text{Int}(B) \).

Therefore
\[
\text{Int}(A \cap B) \subset \text{Int}(A) \cap \text{Int}(B) \tag{1}
\]

Now suppose that \(x \in \text{Int}(A) \cap \text{Int}(B) \), that is, \(x \in \text{Int}(A) \) and \(x \in \text{Int}(B) \). Then there exists \(\alpha > 0 \) and \(\beta > 0 \) such that \(B(x; \alpha) \subset A \) and \(B(x; \beta) \subset B \). Let \(\rho = \min \{\alpha, \beta\} \). Then
\[
B(x; \rho) \subset B(x; \alpha) \subset A \quad \text{and} \quad B(x; \rho) \subset B(x; \beta) \subset B.
\]

Therefore \(B(x; \rho) \subset A \cap B \) and so \(x \in \text{Int}(A \cap B) \). Therefore
\[
\text{Int}(A) \cap \text{Int}(B) \subset \text{Int}(A \cap B) \tag{2}
\]

Statements (1) and (2) imply that \(\text{Int}(A) \cap \text{Int}(B) = \text{Int}(A \cap B) \).

(ii) Let \(A = [1, 2] \) and \(B = [2, 3] \subset \mathbb{E}_1 \). Then \(\text{Cl}(A) = [1, 2] \) and \(\text{Cl}(B) = [2, 3] \) and so \(\text{Cl}(A) \cap \text{Cl}(B) = \{2\} \). But \(A \cap B = \emptyset \) and thus \(\text{Cl}(A \cap B) = \emptyset \). Therefore it is not always true that \(\text{Cl}(A) \cap \text{Cl}(B) = \text{Cl}(A \cap B) \).

3.4 Suppose that \((a_n) \) is a sequence in \(M \) and that \(a \in M \).

(i) Suppose that, for any open ball \(B \) centred at \(a \), there exists \(N \in \mathbb{N} \) such that
\[
\forall n \in \mathbb{N}, \text{ if } n \geq N \text{ then } a_n \in B.
\]

We must show that \(\lim_n(a_n) = a \).

Let \(\epsilon > 0 \). Then there exists \(N \in \mathbb{N} \) such that
\[
\forall n \in \mathbb{N}, \text{ if } n \geq N \text{ then } a_n \in B(a; \epsilon),
\]
that is,
\[
\forall n \in \mathbb{N}, \text{ if } n \geq N \text{ then } d(a_n, a) < \epsilon.
\]

Therefore \(\lim_n(a_n) = a \).

Please turn over.
(ii) Suppose that \(\lim_n (a_n) = a \) and that \(B \) is an open ball centred at \(a \). Let \(\rho \) be the radius of \(B \), that is, let \(B = B(a; \rho) \). Since \(\rho > 0 \), there exists \(N = N(\rho) \in \mathbb{N} \) such that

\[
\forall n \in \mathbb{N}, \text{ if } n \geq N \text{ then } d(a_n, a) < \rho,
\]

that is,

\[
\forall n \in \mathbb{N}, \text{ if } n \geq N \text{ then } a_n \in B(a; \rho) = B.
\]

3.5 Suppose that \(f : X \to Y \) and that \(a \in \text{dom}(f) \).

(i) Suppose that for any open ball \(B' \subset Y \) centred at \(f(a) \) there exists an open ball \(B \subset X \) centred at \(a \) such that, for all \(x \in \text{dom}(f) \), if \(x \in B \) then \(f(x) \in B'(f(a)) \). Let \(\epsilon > 0 \). Then there exists an open ball \(B \subset X \) centred at \(a \) such that, for all \(x \in \text{dom}(f) \),

\[
\text{if } x \in B \text{ then } f(x) \in B(f(a); \epsilon)
\]

Let \(\delta \) be the radius of \(B \). Then (1) can be written as

\[
\text{if } x \in B(a; \delta) \text{ then } f(x) \in B(f(a); \epsilon),
\]

that is,

\[\text{if } d(x, a) < \delta \text{ then } d'(f(x), f(a)) < \epsilon.\]

Therefore \(f \) is continuous at \(a \).

(ii) Suppose that \(f \) is continuous at \(a \) and that \(B' \subset Y \) is an open ball centred at \(f(a) \). Let \(\rho \) be the radius of \(B' \). Since \(\rho > 0 \) and \(f \) is continuous at \(a \), there exist \(\delta > 0 \) such that, for all \(x \in \text{dom}(f) \),

\[
\text{if } d(x, a) < \delta \text{ then } d'(f(x), f(a)) < \rho,
\]

that is,

\[
\text{if } x \in B(a; \delta) \text{ then } f(x) \in B'. \quad \Box
\]

3.6 Suppose that \((a_n) \) is a sequence in \(M \) and that \(a \in M \). Then, for all \(n \in \mathbb{N} \),

\[
|d(a_n, a) - 0| = |d(a_n, a)| = d(a_n, a)
\]

since a metric does not take a negative value. Therefore

\[
\lim_n (a_n) = a
\]

\[
\exists \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ such that } n \geq N(\epsilon) \implies d(a_n, a) < \epsilon
\]

\[
\exists \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ such that } n \geq N(\epsilon) \implies |d(a_n, a) - 0| < \epsilon
\]

\[
\lim_n (d(a_n, a)) = 0. \quad \Box
\]

3.7 Suppose that \(A \) is a non-empty subset of \(M \). Let \(a \in A \). Then, since \((M, d) \) is a discrete metric space, for all \(x \in M \),

\[
d(x, a) < 0.5 \iff d(x, a) = 0 \iff x = a.
\]

Therefore \(B(a; 0.5) = \{a\} \) and thus \(B(a; 0.5) \subset A \). Therefore \(A \) is open.

For any \(A \subset M \), \(M \setminus A \subset M \). Therefore \(M \setminus A \) is open. Therefore \(A = M \setminus (M \setminus A) \) is closed.

Please turn over.
3.8 The constant function \(f : E_1 \to E_1 : x \to 1 \) is continuous. If \(A \) is the open interval \((0, 1)\) then \(f(A) = \{1\} \) and \(\{1\} \), being a singleton, is closed. Therefore, the answer to the question in the problem is “No.”

3.9 For all \(x \in A \),
\[
x \in \phi^{-1}(\theta^{-1}(S)) \iff \phi(x) \in \theta^{-1}(S) \iff \theta(\phi(x)) \in S
\]
Therefore \((\theta \circ \phi)^{-1}(S) = \phi^{-1}(\theta^{-1}(S)) \).

3.10 Suppose that \(U \) is an open subset of \(P \). Then, since \(g \) is continuous, \(g^{-1}(U) \) is an open subset of \(N \). Therefore, since \(f \) is continuous, \(f^{-1}(g^{-1}(U)) \) is an open subset of \(M \). Therefore, by the equation in 4.9, \((g \circ f)^{-1}(U) \) is an open subset of \(M \). Therefore \(g \circ f \) is continuous.

3.11 Let \(B = B(0; \rho) \). For all \(x, y \in B \),
\[
d(x, y) \leq d(x, 0) + d(0, y) < 2\rho \tag{1}
\]
Therefore the set of distances in \(B \) is bounded above by \(2\rho \). Therefore the diameter of \(B \) is defined. Let \(\lambda \) be the diameter of \(B \). Inequality (1) implies that
\[
\lambda \leq 2\rho \tag{2}
\]
Suppose that
\[
\lambda < 2\rho \tag{3}
\]
Let \(\alpha = (\lambda + 2\rho)/2 \). Then \(\lambda/2 < \alpha < \rho \). Since \(\alpha < \rho \),
\[
(-\alpha, 0, \ldots, 0) \text{ and } (\alpha, 0, \ldots, 0) \in B \tag{4}
\]
Since \(\alpha > \lambda/2 \),
\[
d((-\alpha, 0, \ldots, 0), (\alpha, 0, \ldots, 0)) = 2\alpha > \lambda \tag{5}
\]
Since \(\lambda \) is an upper bound of the set of distances in \(B \), in view of (4), (5) cannot be true. Therefore (3) must be false. Therefore \(\lambda = 2\rho \).

3.12 Suppose that \((a_n) \) is an infinite sequence in \(K \cup L \). We consider two possibilities, one of which must hold.
(i) Only a finite number of the terms of \((a_n) \) belong to \(K \).

Therefore an infinite number of the terms of \((a_n) \) must belong to \(L \), in other words, the terms of \((a_n) \) that belong to \(L \) form an infinite sequence in \(L \). Since \(L \) is compact, this sequence has a subsequence \((a_{k_n}) \) that converges in \(L \). But \((a_{k_n}) \) is a subsequence of \((a_n) \) and, since it converges in \(L \), it converges in \(K \cup L \).

(ii) An infinite number of the terms of \((a_n) \) belong to \(K \).

These terms form an infinite sequence in \(K \). Since \(K \) is compact, this sequence has a subsequence \((a_{k_n}) \) that converges in \(K \). But \((a_{k_n}) \) is a subsequence of \((a_n) \) and, since it converges in \(K \), it converges in \(K \cup L \).

Therefore any infinite sequence in \(K \cup L \) has a subsequence that converges in \(K \cup L \). Therefore \(K \cup L \) is compact.

3.13 Use induction on \(n \) and the proposition in Problem 4.12

Please turn over.
3.14 Suppose that K is a compact subset of a metric space M. Suppose that (a_n) is an infinite sequence in K that converges to $a \in M$. To show that K is closed we must show that $a \in K$.
Since K is compact, (a_n) has a subsequence (a_{k_n}) that converges in K. But, since (a_n) converges to a, (a_{k_n}) must converge to a. Therefore $a \in K$. Therefore K is closed.

3.15 Suppose that $A \cup B$ is disconnected. Then there is a continuous two-valued function $f : A \cup B \to \mathbb{E}_1$. The function $f|A$ is continuous and $f(A) \subseteq \{0, 1\}$. Since A is connected, $f|A$ cannot be two-valued and therefore it must be constant. Since B is connected, $f|B$ must also be constant. Since f is two-valued on $A \cup B$ its value on A must be different from its value on B.
But this is impossible because $A \cap B \neq \emptyset$. Therefore $A \cup B$ is connected.

3.16 Clearly, A is bounded. We must show that A is closed.
Suppose that (x_n) is an infinite sequence in A that converges in (\mathbb{Q}, d) to x. We must show that $x \in A$. If we treat (x_n) as an infinite sequence in \mathbb{E}_1 then, since, for all $n \in \mathbb{N}$, $0 \leq x_n < e$ the squeezing (or sandwich) rule implies that $0 \leq x \leq e$. But $x \in \mathbb{Q}$ and $e \notin \mathbb{Q}$. Therefore $0 \leq x < e$, that is, $x \in A$. Therefore A is a closed subset of (\mathbb{Q}, d).
Notice that A is not a closed subset of \mathbb{E}_1.
For all $n \in \mathbb{N}$, let $e_n = (1 + 1/n)^n$. Then (e_n) is a sequence in A. If (e_n) is treated as a sequence in \mathbb{E}_1 then $\lim_n (e_n) = e$. Therefore every subsequence of (e_n) converges to e. Therefore, since $e \notin A$, no subsequence of (e_n) converges in A. Therefore A is not a compact subset of (\mathbb{Q}, d).

3.17 (i) Suppose that M is disconnected. Then M has a proper non-empty subset that is both an open subset of M and a closed subset of M. Suppose that
$$\text{Bd}(A) \neq \emptyset$$

Let $x \in \text{Bd}(A)$. If $x \in A$ the A is not open: if $x \notin A$ then A is not closed. Therefore (1) must be false, that is, $\text{Bd}(A) = \emptyset$.

(ii) Suppose that A is a proper non-empty subset of M and that $\text{Bd}(A) = \emptyset$. Then
$$\text{Cl}(A) = A \cup \text{Bd}(A) = A \cup \emptyset = A$$
and $\text{Int}(A) = A \setminus \text{Bd}(A) = A \setminus \emptyset = a$.

Therefore A is both open and closed. Therefore M is disconnected.

3.18 Suppose that $A \subset M$. Then $x \in \text{Bd}(A)$ iff every open ball centred at x contains a point of A and a point of $M \setminus A$. It is easy to see that this implies that $\text{Bd}(A) = \text{Bd}(M \setminus A)$. Therefore
$$\text{Cl}(A) \cap \text{Cl}(M \setminus A) = [A \cup \text{Bd}(A)] \cap [(M \setminus A) \cup \text{Bd}(M \setminus A)] = [A \cup \text{Bd}(A)] \cap [(M \setminus A) \cup \text{Bd}(A)] = \text{Bd}(A)$$
since $A \cap (M \setminus A) = \emptyset$. Therefore
$$\text{Cl}(A) \cap \text{Cl}(M \setminus A) = \emptyset \text{ iff } \text{Bd}(A) = \emptyset.$$

The proof is completed by using the proposition of Problem 3.17.