Problems 5

5.1 Suppose that 3 paths in \(\mathbb{C} \), \(\alpha \), \(\beta \), and \(\gamma \), are defined as follows:

\[
\begin{align*}
\alpha : [0, 2] & \to \mathbb{C} : t \mapsto t + it^3; \\
\beta : [0, 1] & \to \mathbb{C} : t \mapsto 2t; \\
\gamma : [0, 1] & \to \mathbb{C} : t \mapsto 2 + 8it.
\end{align*}
\]

Make a rough sketch of \(\alpha^* \), \(\beta^* \), and \(\gamma^* \); show how each path is oriented.

Evaluate each of the following integrals:

\[
\begin{align*}
(i) & \int_{\alpha} \overline{z} \, dz, \\
(ii) & \int_{\beta} \overline{z} \, dz, \\
(iii) & \int_{\gamma} \overline{z} \, dz, \\
(iv) & \int_{\beta \ast \gamma} \overline{z} \, dz
\end{align*}
\]

5.2 Working directly from the definition of a complex path integral prove that if \(\gamma \) is a contour then, for all \(n \in \mathbb{N} \),

\[
\int_{\gamma} z^n \, dz = 0.
\]

Hence show that, for any polynomial function, \(p \),

\[
\int_{\gamma} p(z) \, dz = 0.
\]

[In this problem you are asked to verify Cauchy’s Integral Theorem for polynomial functions.]

5.3 Suppose that \(\alpha \), \(\beta \), and \(\gamma \) are defined as in Problem 5.1. Evaluate each of the following integrals:

\[
\begin{align*}
(i) & \int_{\alpha} z^3 \, dz, \\
(ii) & \int_{\beta} z^3 \, dz, \\
(iii) & \int_{\gamma} z^3 \, dz, \\
(iv) & \int_{\beta \ast \gamma} z^3 \, dz
\end{align*}
\]

5.4 For each of the following real-valued functions \(u \),

- Show that \(u \) is a harmonic function.
- Construct a function \(v : \mathbb{R}^2 \to \mathbb{R} \) such that if \(f = u + iv \) then \(f \) is holomorphic on \(\mathbb{C} \).
- Describe \(f \) by writing an expression in \(z \) for \(f(z) \).

\[
\begin{align*}
(i) & \quad u : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto x^3 - 3xy^2. \\
(ii) & \quad u : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto e^x \cos(y) + e^{-y} \cos(x).
\end{align*}
\]

Please turn over.
5.5 Evaluate each of the following integrals.

(i) \(\int_{\gamma} \frac{z \, dz}{z^2 - 2iz + 3} \) \quad \text{where} \ \gamma = \kappa(i; 1).

(ii) \(\int_{\gamma} \frac{z \, dz}{z^2 - 2iz + 3} \) \quad \text{where} \ \gamma = \kappa(0; 2).

(iii) \(\int_{\gamma} \frac{z \, dz}{z^2 - 2iz + 3} \) \quad \text{where} \ \gamma = \kappa(2i; 2).

(iv) \(\int_{\gamma} \frac{z \, dz}{z^2 - 2iz + 3} \) \quad \text{where} \ \gamma = \kappa(0; 4).

(v) \(\int_{\gamma} \frac{ze^{\pi z} \, dz}{(z - i)^3} \) \quad \text{where} \ \gamma = \kappa(0; 3).

(vi) \(\int_{\gamma} \frac{z \, dz}{(z - 2iz + 8)^2} \) \quad \text{where} \ \gamma = \kappa(0; 3).

Recall that \(\kappa(a; p) \) is the positively-oriented circular contour of radius \(p \) centred at \(a \).