Third Arts [B.Sc. (Economics and Finance) III]

Problems 1

If \(f : \mathbb{R} \to \mathbb{R} \) then the statement “\(f \) is continuous at \(a \)” can be defined in terms of convergent sequences. Use this form of the definition to solve Problems 1, 2, and 3.

1.1 Suppose that \(f \) and \(g : \mathbb{R} \to \mathbb{R} \). Then we define

\[
f g = f \cdot g : \text{dom}(f) \cap \text{dom}(g) \to \mathbb{R} : x \mapsto f(x)g(x).
\]

Prove that if \(f \) and \(g \) are both continuous at \(a \) then \(f g \) is continuous at \(a \).

1.2 Suppose that \(f \) and \(g : \mathbb{R} \to \mathbb{R} \) and that

\[
A = \{ x \in \text{dom}(f) \cap \text{dom}(g) \mid g(x) \neq 0 \}.
\]

Then we define \(f / g : A \to \mathbb{R} : x \mapsto f(x) / g(x) \).

Prove that if \(f \) and \(g \) are both continuous at \(a \) and \(g(a) \neq 0 \) then \(f / g \) is continuous at \(a \).

1.3 Suppose that \(f \) and \(g : \mathbb{R} \to \mathbb{R} \) are both continuous at \(a \). Working directly from Cauchy’s \((\epsilon, \delta)\)-definition of continuity, prove that \(f + g \) is continuous at \(a \).

1.4 For all \(x \in \mathbb{R} \), we define \(\lfloor x \rfloor \), the floor of \(x \) to be the largest integer that is less than or equal to \(x \).

For example, \(\lfloor 3 \rfloor = 3 \), \(\lfloor 3.7 \rfloor = 3 \), and \(\lfloor -2.5 \rfloor = -3 \).

Suppose that \(f : \mathbb{R} \to \mathbb{R} : x \mapsto \lfloor x \rfloor \).

(i) Draw the graph of \(f \) on the interval \([−3, 3]\).

(ii) Decide what are the points of discontinuity of \(f : \mathbb{R} \to \mathbb{R} \).

(iii) Justify your decision in (ii) for one of the points of discontinuity.

1.5 Construct a function \(f : [0, 2] \to \mathbb{R} \) that has all the following properties.

(i) \(\min \{ f(x) \mid x \in [0, 2] \} = 0 \);

(ii) \(\max \{ f(x) \mid x \in [0, 2] \} = 1 \);

(iii) for all \(0 < \gamma < 1 \), there exists \(c \in [0, 2] \) such that \(f(c) = \gamma \);

(iv) \(f \) is not continuous at \(1 \).

Hint: Begin by drawing the graph of \(f \).

*Some authors call the floor of \(x \) the integer part of \(x \) and denote it by \(\lfloor x \rfloor \).

Please turn over.
1.6 Suppose that

\[f : [-1, 1] \to \mathbb{R} : x \mapsto \begin{cases}
\frac{1}{x} & \text{if } x \neq 0 \\
0 & \text{if } x = 0.
\end{cases} \]

Prove that

(i) \(f \) is neither bounded above nor bounded below on \([-1, 1]\).

(ii) \(f \) is not continuous at 0.

Hint: Begin by drawing the graph of \(f \).

1.7 Prove that the function \(\cos : \mathbb{R} \to \mathbb{R} \) has a unique fixed point.

1.8 Suppose that \(f(x) = \tan(\sin(x)) \). Use the iteration sequence for \(f \) to find two non-zero numbers that are fixed points of \(f \) correct to 6 decimal places.

[You will need to use a calculator for this problem.]