6 Continuous Functions

6.1 Suppose that \(f : M \rightarrow N \) where \(M \) and \(N \) are metric spaces. Suppose also that \(A \) is a non-empty subset of \(\text{dom}(f) \).

Then we say that \(f \) is continuous on \(A \) if and only if, for all \(a \in A \), \(f \) is continuous at \(a \). If \(f \) is continuous on \(\text{dom}(f) \) then we say that \(f \) is continuous.

6.2 Definition

Suppose that \(f : A \rightarrow B \) and that \(X \) is a set. Then we define \(f(X) \), the image of \(X \) by \(f \) by

\[
f(X) = \{ y \in B \mid \text{for some } x \in X \cap A, y = f(x) \}.
\]

In other words, \(f(X) \) is the set of all the values that \(f \) assigns to those elements of \(X \) on which \(f \) is defined.

6.3 If \(f : A \rightarrow B \) and \(X \cap A = \emptyset \) then \(f(X) = \emptyset \).

6.4 Example

Suppose that \(f : \mathbb{R} \rightarrow \mathbb{R} : x \mapsto x^2 \). Then

\[
\begin{align*}
0 &\mapsto 0; \\
1 &\mapsto 1; \\
2 &\mapsto 4; \\
3 &\mapsto 9.
\end{align*}
\]

6.8 Recall that in 5.25 we presented the following definition:

Suppose that \(f : X \rightarrow Y \) where \((X,d) \) and \((Y,d') \) are metric spaces, and that \(a \in \text{dom}(f) \). Then \(f \) is continuous at \(a \) if and only if, for every open ball \(B' \subset Y \) centred at \(f(a) \) there exists an open ball \(B \subset X \) centred at \(a \) such that,

\[
\text{for all } x \in \text{dom}(f), \text{ if } x \in B \text{ then } f(x) \in B'.
\]

6.9 Theorem

Suppose that \((M,d_1) \) and \((N,d_2) \) are metric spaces and that \(f : M \rightarrow N \). Then \(f \) is continuous (on \(M \)) if and only if, for every open subset \(V \) of \(N \), the set \(f^{-1}(V) \) is an open subset of \(M \).

Proof

(i) Suppose that \(f \) is continuous and that \(V \) is an open subset of \(N \).

Let \(x \in f^{-1}(V) \), that is, suppose that \(x \in M \) is such that \(f(x) \in V \). We shall show that \(x \) is an interior point of \(f^{-1}(V) \) thus proving that \(f^{-1}(V) \) is open.

Let \(y = f(x) \). Since \(V \) is open and \(y \in V \), there exists \(\varepsilon > 0 \) such that

\[
B(y;\varepsilon) \subset V. \tag{1}
\]

Since \(f \) is continuous at \(x \), there exists \(\delta > 0 \) such that, for all \(u \in M \),

\[
u \in B(x;\delta) \implies f(u) \in B(y;\varepsilon)
\]

Therefore \(B(x;\delta) \subset f^{-1}(V) \). Therefore \(x \) is an interior point of \(f^{-1}(V) \).

(ii) Suppose that the inverse image of every open subset of \(N \) by \(f \) is open in \(M \).

Let \(x \in M \). We shall show that \(f \) is continuous at \(x \) and thus continuous on \(M \).

Let \(B' \) be any open ball in \(N \) that is centered at \(f(x) \). Let

\[
U = f^{-1}(B').
\]

Since \(f(x) \in B' \), \(x \in U \).

Since \(B' \) is an open subset of \(N \), \(U \) is an open subset of \(M \).

Since \(x \in U \) and \(U \) is open, \(x \in \text{Int}(U) \). Therefore there is an open ball \(B \) centred at \(x \) that is a subset of \(U \). Furthermore, for all \(z \in M \),

\[
z \in B \implies z \in U \implies f(z) \in B'.
\]

Therefore \(f \) is continuous at \(x \). \(\square \)

6.10 Corollary

Suppose that \((M,d) \) is a metric space and that \(f : M \rightarrow \mathbb{R} \) is continuous. Then, for all \(a \in \mathbb{R} \), \(\{ x \in M : f(x) < a \} \) is an open subset of \(M \).

Proof
For all $a \in \mathbb{R}$, (\leftarrow, a) is an open subset of \mathbb{R}_1. Now
\[
\{ x \in M \mid f(x) < a \} = \{ x \in M \mid f(x) \in (\leftarrow, a) \} = f^{-1}(\leftarrow, a)
\]

Therefore, since f is continuous, Theorem 6.9 implies that \{ $x \in M \mid f(x) < a$ \} is an open subset of M. \square

6.11 A closed interval of finite length is called a compact interval. If $f : \mathbb{R} \rightarrow \mathbb{R}$ is continuous on the compact interval $[a, b]$ then f has both a minimum point and a maximum point in $[a, b]$.

In the above diagram a is a maximum point and c is a minimum point of f on $[a, b].$

Can we extend the definition of compact to subsets of a metric space so that if (M, d) is a metric space, $f : M \rightarrow \mathbb{R}$ is continuous, and A is a compact subset of M then f has both a minimum point and a maximum point on A?