21 The Fundamental Theorem of Algebra

21.1 Theorem (Cauchy’s Inequality)
Suppose that $a \in \mathbb{C}$, that $\rho > 0$, and that $\gamma = \kappa(a; \rho)$. Suppose that f is a function that is holomorphic on $\mathbb{D}(\gamma)$, that is, on the closed disk of radius ρ, centred at a. Suppose also that $M \in \mathbb{R}$ is such that, for all $z \in \gamma^*$, $|f(z)| \leq M$. Then,

$$|f^{(n)}(a)| \leq \frac{n!M}{\rho^n}.$$

Proof

∗∗∗

21.2 Definition
A complex function $f : \mathbb{C} \to \mathbb{C}$ is said to be an entire function if and only if it is holomorphic (everywhere on \mathbb{C}).

21.3 Any polynomial function, the functions sin and cos, and the exponential function are all examples of entire functions.

21.4 Theorem (Liouville’s Theorem)
An entire function that is bounded on \mathbb{C} is constant on \mathbb{C}.

Proof
Suppose that $f : \mathbb{C} \to \mathbb{C}$ is an entire function and that $M \in \mathbb{R}$ is such that

$$|f(z)| \leq M.$$

If $M = 0$ then f is the zero constant function. Therefore we can assume that $M > 0$.

Suppose that $a \in \mathbb{C}$ and that $\varepsilon > 0$. Let $\rho = M/\varepsilon$. Then $\rho > 0$ and Cauchy’s Inequality, for $n = 1$, implies that

$$|f'(a)| \leq \frac{M}{\rho} = \varepsilon.$$

(1)

Since inequality (1) is true for all $\varepsilon > 0$, $|f''(a)| = 0$ and thus $f'(a) = 0$. Since $f'(a) = 0$ for all $a \in \mathbb{C}$, Theorem 13.27 implies that f is constant on \mathbb{C}. □

21.5 Notice that Liouville’s Theorem implies that the complex trigonometric functions sin and cos are not bounded on \mathbb{C}.

21.6 Recall that if

$$p : \mathbb{C} \to \mathbb{C} : z \mapsto \sum_{k=0}^{n} a_n z^n$$

is a polynomial function where $a_n \neq 0$ then we say that n is the degree of p. We denote the degree of p by $\deg(p)$.

A polynomial function of degree 1 is called a linear function.

21.7 Definition
Suppose that $f : \mathbb{C} \to \mathbb{C}$. Then $a \in \text{dom}(f)$ is a zero of f if and only if $f(a) = 0$.

21.8 Theorem (The Division Algorithm)
Suppose that p and q are polynomial functions and that the $\deg(q) \leq \deg(p)$. Then there exist polynomial functions s and r such that,
(i) for all \(z \in \mathbb{C} \), \(p(z) = q(z)s(z) + r(z) \)

(ii) \(\deg(r) < \deg(q) \).

Proof (in outline) We prove this theorem by treating \(p(z) \) and \(q(z) \) as polynomials in \(z \) and using algebraic long division to divide \(p(z) \) by \(q(z) \).

21.9 Example
Suppose that \(p(z) = z^3 + z^2 - z + 1 \) and \(q(z) = z + 2 \). We use algebraic long division to divide \(p(z) + q(z) \).

\[
\begin{array}{r|rrrr}
 & z^2 & + 2z & - 2z & - z + 1 \\
\hline
z + 2 | z^3 & + z^2 & - z & + 1 \\
& z^3 & + 2z^2 & & \\
\hline
& & -z^2 & - z & + 1 \\
& & -z^2 & - 2z & \\
\hline
& & & z & + 2 \\
\end{array}
\]

Therefore \(p(z) = q(z)s(z) + r(z) \) where \(s(z) = z^2 - z + 1 \) and \(r(z) = -1 \). Notice that the \(\deg(r) = 0 < 1 = \deg(s) \).

21.10 Corollary
Suppose that \(p \) is a polynomial function of degree \(n \) where \(n \geq 2 \) and that \(a \) is a zero of \(p \). Then there is a polynomial function \(s \) of degree \(n - 1 \) such that,

for all \(z \in \mathbb{C} \), \(p(z) = (z - a)s(z) \).

21.11 Lemma
If \(p : \mathbb{C} \to \mathbb{C} \) is a polynomial function of (strictly) positive degree then as \(|z| \to \infty \), \(|p(z)| \to \infty \).

Proof (in outline) Suppose that \(p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 \). Then

\[
|p(z)| = |a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0| \\
= |a_n| |z|^n \left| 1 + \frac{a_{n-1}}{a_n z} + \frac{a_{n-2}}{a_n z^2} + \cdots + \frac{a_0}{a_n z^n} \right|.
\]

Therefore, for large values of \(z \), \(|p(z)| \approx |a_n| |z|^n \). Therefore as \(|z| \to \infty \), \(|p(z)| \to \infty \).

21.12 Suppose that \(p : \mathbb{C} \to \mathbb{C} \) is a polynomial function of strictly positive degree. Suppose also that \(p \) does not have a zero, that is, that

for all \(z \in \mathbb{C} \), \(p(z) \neq 0 \).
This allows us to define

\[f : \mathbb{C} \to \mathbb{C} : z \mapsto \frac{1}{p(z)}. \]

Since \(f \) is a rational function it is a differentiable function, that is, \(f \) is holomorphic on \(\mathbb{C} \). In other words,

\[f \text{ is an entire function.} \quad (2) \]

By Lemma 21.11, as \(|z| \to \infty \), \(|p(z)| \to \infty \) and thus \(|f(z)| \to 0 \). Therefore there exists \(M > 0 \) such that

\[\text{for all } z \in \mathbb{C}, \text{ if } |z| > M \text{ then } |f(z)| < 1. \quad (3) \]

Let \(D \subset \mathbb{C} \) be the closed disk of radius \(M \) centred at \(0 \). \(D \) is closed and bounded and \(f \), being holomorphic on \(\mathbb{C} \), is continuous on \(D \). Therefore we can use Theorem 9.20 to show that \(f \) is bounded on \(D \), that is, that there exists \(B > 0 \) such that,

\[\text{for all } z \in \mathbb{C}, \text{ if } |z| \leq M \text{ then } |f(z)| \leq B. \quad (4) \]

Statements (3) and (4) imply that,

\[\text{for all } z \in \mathbb{C}, \ |f(z)| \leq \max\{ 1, B \}. \]

In other words,

\[f \text{ is bounded on } \mathbb{C}. \quad (5) \]

By Liouville’s Theorem, statements (2) and (5) imply that \(f \) is a constant function. But the degree of \(p \) is strictly positive and therefore \(f \) is not a constant function. Therefore statement (1) is false and we have proved the following theorem.

21.13 Theorem

Suppose that \(p : \mathbb{C} \to \mathbb{C} \) is a polynomial function of strictly positive degree. Then \(p \) has a zero, that is, there exists \(a \in \mathbb{C} \) such that \(p(a) = 0 \). \(\square \)

21.14 Theorem (The Fundamental Theorem of Algebra)

Suppose that \(p : \mathbb{C} \to \mathbb{C} \) is a polynomial function of degree \(n \) where \(n \geq 1 \). Then there exist \(c, a_1, a_2, \ldots, a_n \in \mathbb{C} \) such that

\[\text{for all } z \in \mathbb{C}, \ p(z) = c \prod_{k=1}^{n} (z - a_k) \]

\[= c(z - a_1)(z - a_2) \cdots (z - a_n). \]

Proof We prove this theorem by induction on \(n \). It is obvious that the theorem is true when \(n = 1 \).

Our inductive hypothesis is that if \(p_n \) is a polynomial function of degree \(n \) then there exist \(c, a_1, a_2, \ldots, a_n \in \mathbb{C} \) such that

\[\text{for all } z \in \mathbb{C}, \ p_n(z) = c(z - a_1)(z - a_2) \cdots (z - a_n). \quad (1) \]

We must deduce that if \(p_{n+1} \) is a polynomial function of degree \(n + 1 \) then there exist \(c', a'_1, a'_2, \ldots, a'_{n+1} \in \mathbb{C} \) such that

\[\text{for all } z \in \mathbb{C}, \]

\[p_{n+1}(z) = c'(z - a'_1)(z - a'_2) \cdots (z - a'_{n+1}). \quad (2) \]

Suppose that \(p_{n+1} \) is a polynomial function of degree \(n + 1 \). Then, by Theorem 21.13, \(p_{n+1} \) has a zero \(a \in \mathbb{C} \). Therefore Corollary 21.10 implies that there is a polynomial function of degree \(n \), let us call it \(p_n \), such that

\[\text{for all } z \in \mathbb{C}, \ p_{n+1}(z) = (z - a)p_n(z). \]
Therefore (1) implies that, for all $z \in \mathbb{C}$,
\[
p_{n+1}(z) = (z - a)c(z - a_1)(z - a_2) \cdots (z - a_n) \\
= c(z - a)(z - a_1)(z - a_2) \cdots (z - a_n).
\]

21.15 The Fundamental Theorem of Algebra can be restated as follows:

Every complex polynomial of degree n, where $n \geq 1$, has exactly n linear factors.

21.16 Notice that Theorem 21.14 is not true if \mathbb{C} is replaced by \mathbb{R}, that is, it is not true for real polynomials. For example, the real polynomial in x, $x^2 + 1$, does not have real linear factors.

21.17 Theorem 21.14 is an existence theorem: it does not contain an algorithm for constructing the linear factors of a given polynomial.