18 Cauchy’s Integral Formula

18.1 Lemma
Suppose that A is an open subset of \mathbb{C}, that $f : A \to \mathbb{C}$, and that $a \in A$. Then f is differentiable at a if and only if there exist $g : A \to \mathbb{C}$ and $d \in \mathbb{C}$ that satisfy both of the following statements:

α: for all $z \in A$, $f(z) - f(a) = (z - a)d + (z - a)g(z)$;

β: \(\lim_{z \to a} g(z) = 0. \)

If f is differentiable at a then $d = f'(a)$.

Proof

Suppose that f is differentiable at a. Let

$$ g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} - f'(a) & \text{if } z \neq a, \\ 0 & \text{if } z = a. \end{cases} $$

Then g satisfies α where $d = f'(a)$ and

$$ \lim_{z \to a} g(z) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} - \lim_{z \to a} f'(a) = f'(a) - f'(a) = 0. $$

Therefore g satisfies β.

Now suppose that there exists $g : A \to \mathbb{C}$ and $d \in \mathbb{C}$ that satisfy α and β. Then

$$ \lim_{z \to a} \frac{f(z) - f(a)}{z - a} = \lim_{z \to a} [d + g(z)] = d. $$

Therefore f is differentiable at a and $f'(a) = d$. \qed

18.2 Lemma
Suppose that A is a simply-connected region of \mathbb{C} and that f is holomorphic on A. Suppose also that γ is a contour in A. Then, for all $a \in \mathbb{I}(\gamma)$,

$$ \int_{\gamma} \frac{f(z) - f(a)}{z - a} \, dz = 0. $$

Proof

Let $\epsilon > 0$

Since f is differentiable at a, Lemma 18.1 implies that there exists $g : A \to \mathbb{R}$ such that

$$ f(z) - f(a) = (z - a)f'(a) + (z - a)g(z) \quad (1) $$

and

$$ \lim_{z \to a} g(z) = 0. $$

Therefore there exists $\delta > 0$ such that, for all $x \in A$.

$$ \text{if } 0 < |z - a| < \delta \text{ then } |g(z)| < \epsilon. \quad (2) $$

Since $a \in \mathbb{I}(\gamma)$ and $\mathbb{I}(\gamma)$ is an open set, there exists $\sigma > 0$ such that $B(a; \sigma) \subset \mathbb{I}(\gamma)$. Let

$$ \rho = \min \{ \delta/2, \sigma/2, 1 \} $$

and let

$$ \gamma^\rho : [0, 2\pi] \to \mathbb{C} : t \mapsto a + \rho e^{it}. $$

Then γ^ρ is a contour and γ^ρ is the circle of radius ρ centred at a.

Since $\rho \leq \sigma/2 < \sigma$, $\gamma^\rho \subset \mathbb{I}(\gamma)$.

\[\square \]
Furthermore, for all \(z \in \gamma^\ast \rho \), \(0 < |z - a| = \rho < \delta \) and thus for all \(z \in \gamma^\ast \rho \), \(|g(z)| < \varepsilon \).

By the Deformation Theorem (16.22),
\[
\int_{\gamma} \frac{f(z) - f(a)}{z - a} \, dz = \int_{\gamma^\rho} \frac{f(z) - f(a)}{z - a} \, dz
= \int_{\gamma^\rho} [f'(a) + g(z)] \, dz
= f'(a) \int_{\gamma^\rho} \, dz + \int_{\gamma^\rho} g(z) \, dz
= \int_{\gamma^\rho} g(z) \, dz
\]
Therefore
\[
\left| \int_{\gamma} \frac{f(z) - f(a)}{z - a} \, dz \right| = \int_{\gamma^\rho} |g(z)| \, dz
\]

Therefore, since \(\rho \leq 1 \), for all \(\varepsilon > 0 \),
\[
\left| \int_{\gamma} \frac{f(z) - f(a)}{z - a} \, dz \right| \leq 2\pi \varepsilon.
\]
Therefore
\[
\int_{\gamma} \frac{f(z) - f(a)}{z - a} \, dz = 0. \quad \Box
\]

18.3 Theorem (Cauchy’s Integral Formula, CIF)
Suppose that \(A \) is a simply-connected region of \(\mathbb{C} \) and that \(f \) is holomorphic on \(A \). Suppose that \(\gamma \) is a positively oriented contour in \(A \). Then, for all \(a \in \Pi(\gamma) \),
\[
f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z) \, dz}{z - a}.
\]

Proof For all \(z \in \Pi(\gamma) \),
\[
\int_{\gamma} \frac{f(z) \, dz}{z - a} = \int_{\gamma} \frac{f(a) + f(z) - f(a)}{z - a} \, dz
= f(a) \int_{\gamma} \frac{dz}{z - a} + \int_{\gamma} \frac{f(z) - f(a)}{z - a} \, dz
\]
Therefore Corollary 16.23 and Lemma 18.2 imply that
\[
\int_{\gamma} \frac{f(z) \, dz}{z - a} = f(a) \cdot 2\pi i. \quad \Box
\]

18.4 For all \(a \in \mathbb{C} \) and \(\rho > 0 \), we denote the circular contour \([0, 2\pi] \to \mathbb{C} : t \mapsto a + \rho e^{it} \) by \(\kappa(a; \rho) \).
18.5 Example
Evaluate each of following integrals:

(i) \(\int_{\gamma} \frac{\cos(z)}{z} \, dz \) where \(\gamma = \kappa(i; 2) \);

(ii) \(\int_{\gamma} \frac{z}{z^2 + 25} \, dz \) where \(\gamma = \kappa(3; 5) \);

(iii) \(\int_{\gamma} \frac{z}{z^2 + 25} \, dz \) where \(\gamma = \kappa(3i; 5) \).

(i)

Since \(0 \in \mathbb{I}(\gamma) \), and cos is holomorphic on \(\mathbb{C} \), by CIF,
\[
\int_{\gamma} \frac{\cos(z)}{z} \, dz = 2\pi i \cos(0) = 2\pi i.
\]

(ii)

Let \(f(z) = \frac{z}{z^2 + 25} = \frac{z}{(z + 5i)(z - 5i)} \).
Since \(f \) is a rational function it is differentiable. Therefore, since \(5i \) and \(-5i \notin \mathbb{I}^+(\gamma) \), \(f \) is holomorphic on \(\mathbb{I}^+(\gamma) \).
Therefore, by CIT,
\[
\int_{\gamma} \frac{z}{z^2 + 25} \, dz = 0.
\]

(iii)
Let $g(z) = z/(z + 5i)$. Then $f(z) = g(z)/(z - 5i)$.

Since $5i \in \Pi(\gamma)$ and $-5i \notin \Pi^*(\gamma)$, by CIF,

$$
\int_{\gamma} \frac{z}{z^2 + 25} \, dz = \int_{\gamma} \frac{g(z)}{z - 5i} \, dz = 2\pi i g(5i) = \pi i.
$$