13 Holomorphic Functions

13.1 Since \(\mathbb{C} \) is a metric space and, as such, is identical to \(\mathbb{E}_2 \), each of the following terms can be applied to \(\mathbb{C} \): open ball, open set, closed set, boundary, interior, exterior, closure, connected, path-connected, polygonally-connected.

13.2 Definition
Suppose that \(A \) is a non-empty subset of \(\mathbb{C} \), that \(f : A \rightarrow \mathbb{C} \), and that \(a \in A \). Then we say that \(f \) is continuous at \(a \) if and only if, for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that, for all \(z \in A \),

if \(|z - a| < \delta \) then \(|f(z) - f(a)| < \varepsilon \).

13.3 Since \(\mathbb{C} \) is a field, many of the theorems about real continuous functions make sense and are true for complex continuous functions. For example, if \(f \) and \(g \) are complex functions that are both continuous at \(a \in \mathbb{C} \) then \(f + g \), \(fg \), and, if \(g(a) \neq 0 \), \(f/g \) are continuous at \(a \).

Complex polynomial functions and rational functions are continuous as are the complex functions \(\exp, \cos, \) and \(\sin \).

13.4 The limit of a complex function is also defined in much the same way that the limit of a real function is defined. The limit of a function \(f \) at \(a \) may exist when \(a \notin \text{dom}(f) \) provided that \(f(z) \) is defined for values of \(z \) arbitrarily close to \(a \).

13.5 Definition
Suppose that \(f : A \rightarrow \mathbb{C} \) where \(\emptyset \neq A \subset \mathbb{C} \), that \(a \in \text{Cl}(A) \), and that \(l \in \mathbb{C} \). Then we say that the limit of \(f \) at \(a \) equals \(l \) and we write

\[
\lim_{z \to a} f(z) = l
\]

if and only if, for all \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that, for all \(z \in A \),

if \(0 < |z - a| < \delta \) then \(|f(z) - l| < \varepsilon \).

13.6 Sometimes we write \(f(z) \to l \) as \(z \to a \) instead of \(\lim_{z \to a} f(z) = l \).

13.7 Since \(\mathbb{C} \) is a field, many of the theorems about real limits make sense and are true for complex limits. For example, a complex function \(f \) has at most one limit as \(z \to a \). Furthermore, if

\[
\lim_{z \to a} f(z) = l \quad \text{and} \quad \lim_{z \to a} g(z) = m
\]

then

(i) \(\lim_{z \to a} f(z) + g(z) = l + m \).

(ii) \(\lim_{z \to a} f(z)g(z) = lm \).

(iii) If \(m \neq 0 \) then \(\lim_{z \to a} \left(\frac{f(z)}{g(z)} \right) = \frac{l}{m} \).

13.8 Theorem
Suppose that \(f : \mathbb{C} \rightarrow \mathbb{C} \) and that \(a \in \text{dom}(f) \). Then \(f \) is continuous at \(a \) if and only if

\[
\lim_{z \to a} f(z) = f(a). \quad \square
\]
13.9 Definition
Suppose that \(A \) is an open subset of \(\mathbb{C} \), that \(f : A \to \mathbb{C} \), and that \(z \in A \). Then we say that \(f \) is differentiable at \(z \) if and only if the limit
\[
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h}
\]
exists. If \(f \) is differentiable at \(z \) then we call this limit the derivative of \(f \) at \(z \) and we denote it by \(f'(z) \). Thus, if \(f \) is differentiable at \(a \) then
\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}.
\]

13.10 Since \(A \) is open, for all \(z \in A \) there is an open ball \(B(z; \rho) \subset A \). This implies that in 13.9 the number \(z + h \) can approach \(z \) in any direction and along any path through \(z \). Therefore if \(f \) is differentiable at \(z \) then the value of the limit
\[
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h}
\]
always takes the same value, \(f'(z) \), if we calculate it as \(h \) approaches 0 along different paths to 0.

13.11 Theorem
If a complex function \(f \) is differentiable at \(a \) then it is continuous at \(a \). □

13.12 The well-known formulas for the derivative of a sum, a product, and a quotient are valid for complex functions. The derivative of a composite complex function is found by using the chain rule.

13.13 Lemma
Suppose that \(f : \mathbb{C} \to \mathbb{C} : z \mapsto \text{Re}(z) \). Then, for all \(z \in \mathbb{C} \), \(f \) is not differentiable at \(z \).

Proof
\[
\text{For all } z \text{ and } h \in \mathbb{C}, \text{ where } h \neq 0, \quad \frac{f(z + h) - f(z)}{h} = \frac{\text{Re}(z + h) - \text{Re}(z)}{h} = \frac{\text{Re}(h)}{h}.
\]
Suppose that \(h \) is a real number. Then \(\text{Re}(h) = h \) and, as \(h \to 0 \),
\[
\frac{f(z + h) - f(z)}{h} = h \to 1.
\]
Now suppose that \(h \) is a pure imaginary number, that is, that \(\text{Re}(h) = 0 \). Then, as \(h \to 0 \),
\[
\frac{f(z + h) - f(z)}{h} = 0 \to 0.
\]
Therefore
\[
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h} = 0.
\]
Suppose that z all derivatives differentiable on A. It can be shown that if f such that, for all z

Furthermore, since $i k \to 0$ if and only if $k \to 0$, $f'(z) = \lim_{k \to 0} \frac{f(z+k) - f(z)}{k}$

and

Furthermore, for all $x + iy \in A$,

$$f'(x + iv) = \frac{\partial u}{\partial x} + iv \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}.$$

Proof (in outline)
Suppose that $z = x + iy \in A$. Then

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$

Suppose that $k \in \mathbb{R}$ **is such that** $k \neq 0$, $z + k \in A$, and $z + ik \in A$. **Then**, in view of 13.10,

$$f'(z) = \lim_{k \to 0} \frac{f(z+k) - f(z)}{k} = \lim_{k \to 0} \frac{f(x+k+iy) - f(x+iy)}{k} = \lim_{k \to 0} \frac{u(x+k,y) + iv(x+k,y) - [u(x,y) + iv(x,y)]}{k} = \lim_{k \to 0} \frac{u(x+k,y) - u(x,y)}{k} + i \lim_{k \to 0} \frac{v(x+k,y) - v(x,y)}{k} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}.$$

Furthermore, since $ik \to 0$ if and only if $k \to 0$,

$$f'(z) = \lim_{ik \to 0} \frac{f(z+ik) - f(z)}{ik}$$

and

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

This implies that the four partial derivatives

$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$

exist on $A \subset \mathbb{R}^2$.

13.15 Theorem

Suppose that A is a non-empty open subset of \mathbb{C}, that $f : \mathbb{C} \to \mathbb{C}$ is differentiable on A, and that $f = u + iv$. Then, at every point of $A \subset \mathbb{R}^2$,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

(1)
\[
\lim_{k \to 0} f(x + i(y + k)) - f(x + iy) = f(x + iy)
\]

\[
= \lim_{k \to 0} u(x, y + k) + iv(x, y + k) - [u(x, y) + iv(x, y)]
\]

\[
= \frac{1}{i} \lim_{k \to 0} \frac{u(x, y + k) - u(x, y)}{k} + \lim_{k \to 0} \frac{v(x, y + k) - v(x, y)}{k}
\]

\[
= -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}
\]

\[
= \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}
\]

Equations (3) and (4) imply that

\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.
\]

13.17 Equations (1) and (2) of Theorem 13.16 are known as the Cauchy-Riemann Equations.

13.18 Example

We have seen (12.23) that if \(f : z \to z^3 \) then

\[
f(x + iy) = u(x, y) + iv(x, y)
\]

where \(u(x, y) = x^3 - 3xy^2 \) and \(v(x, y) = 3x^2y - y^3 \).

\[
\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 3x^2 - 3y^2 + i(6xy)
\]

(1)

13.19 Example

Suppose that \(f(z) = z \) and that \(f = u + iv \). Then

\[
f(x + iy) = x - iy
\]

and thus

\[
u(x, y) = x \quad \text{and} \quad v(x, y) = -y.
\]

Therefore

\[
\frac{\partial u}{\partial x} = 1 \quad \text{and} \quad \frac{\partial v}{\partial y} = -1.
\]

Therefore, for all \((x, y) \in \mathbb{R}^2\), \(u \) and \(v \) do not satisfy the Cauchy-Riemann equations at \((x, y)\). Therefore \(f \) is not differentiable at any point in \(\mathbb{C} \).

13.20 Example

Suppose that

\[
f : \mathbb{C} \to \mathbb{C} : z = x + iy \mapsto \begin{cases} 1 & \text{if } xy = 0, \\ 0 & \text{if } xy \neq 0. \end{cases}
\]
13.126

Suppose that \(f = u + iv \). Then \(v(x, y) = 0 \) and
\[u(x, y) = f(x + iy). \]

\[\left. \frac{\partial u}{\partial x} \right|_{(0,0)} = \lim_{h \to 0} \frac{u(0+h,0) - u(0,0)}{h} = \lim_{h \to 0} \frac{1 - 1}{h} = \lim_{h \to 0} 0 = 0. \]

Similarly,
\[\left. \frac{\partial u}{\partial y} \right|_{(0,0)} = 0. \]

Therefore, since \(v(x, y) = 0 \), \(u \) and \(v \) satisfy the Cauchy-Riemann equations at \((0,0)\).

Let \(h = (1+i)k \) where \(k \in \mathbb{R} \). Then, for \(k \neq 0 \),
\[\frac{f(0+h) - f(0)}{h} = \frac{f((1+i)k) - f(0)}{(1+i)k} = -\frac{1}{(1+i)k}. \]

Therefore
\[\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \]
does not exist. Therefore \(f \) is not differentiable at \(0 \).

13.21 This example shows that the converse of Theorem 13.16 is not true. The following theorem, which we state without proof, is true.

13.22 Theorem
Suppose that \(A \) is a non-empty open subset of \(\mathbb{C} \), that \(f : A \to \mathbb{C} \), and that, for all \(x + iy \in A \),

(i) \(f(x + iy) = u(x, y) + iv(x, y) \) where \(u \) and \(v \) are real-valued functions;

(ii) \(\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \) and \(\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \);

(iii) All the partial derivatives of \(u \) and \(v \) are continuous on \(A \subset \mathbb{R}^2 \).

Then \(f \) is differentiable on \(A \). \(\square \)

13.23 Sometimes we denote the partial derivatives \(\frac{\partial u}{\partial x} \) and \(\frac{\partial u}{\partial y} \) by \(u_x \) and \(u_y \), respectively.

So far, we have used Leibniz notation for partial derivatives. But Leibniz notation is not suitable for denoting the value of a partial derivative at a specific point. It is simpler to write
\[D_1 f(a, b) \]
rather than
\[\left. \frac{\partial f}{\partial x} \right|_{(a, b)}. \]

13.24 Recall the Mean Value Theorem.
Suppose that \(a \) and \(b \in \mathbb{R} \) where \(a < b \) and that \(f \) is a function that has the following properties:

- \(f \) is continuous on the closed interval \([a, b]\);
• f is differentiable on the open interval (a, b); Then there exists $c \in \mathbb{R}$ such that
• $c \in (a, b)$, that is, $a < c < b$;
• $f(b) - f(a) = (b - a)f'(c)$.

13.25 Suppose that A is a non-empty open subset of \mathbb{R}^2, that $a = (b, c) \in A$, and that $h = (k, l) \in \mathbb{R}^2$ is such that the line segment $[a, a + h] \subset A$.

Suppose that $u : A \to \mathbb{R}$ is differentiable on A and suppose that
$$
\phi : [0, 1] \to \mathbb{R}^2 : t \mapsto a + th.
$$
Suppose also that
$$
g = u \circ \phi : [0, 1] \to \mathbb{R} : t \mapsto u(a + th) = u(b + tk, c + tl).
$$
Then ϕ is continuous on $[0, 1]$ and differentiable on $(0, 1)$. Therefore the Mean Value Theorem implies that there exists $0 < \lambda < 1$ such that
$$
g(1) - g(0) = g'(\lambda)
$$
(1)

By the Chain Rule,
$$
g'(t) = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}
= k \cdot D_1 u(a + th) + l \cdot D_2 u(a + th).
$$
(2)

Statements (1) and (2) imply that there exists $0 < \lambda < 1$ such that
$$
 u(a + h) - u(a) = k \cdot D_1 u(a + \lambda h) + l \cdot D_2 u(a + \lambda h).
$$
(3)
Now suppose that, for all $(x, y) \in A$, $D_1 u(x, y) = D_2 u(x, y) = 0$.
In other words, suppose that both (first-order) partial derivatives of u vanish on A.
Then statement (3) implies that $u(a + h) = u(a)$.

We have proved that if both (first-order) partial derivatives of u vanish on A then u has the same value on any two points of A that are connected by a line-segment in A.
Therefore if both partial derivatives of u vanish on A then if a and $b \in A$ are connected by a polygonal path in A then $u(a) = u(b)$.

We can now invoke 11.21 to prove the following lemma.

13.26 Lemma

Suppose that A is a non-empty open connected subset of \mathbb{R}^2, that is, of \mathbb{E}_2. Suppose also that $u : A \to \mathbb{R}$ is such that both of its partial derivatives are defined on A. Then if both partial derivatives of u vanish on A then u is constant on A. \square

13.27 Theorem

Suppose that A is a non-empty open connected subset of \mathbb{C} and that $f : A \to \mathbb{C}$ is differentiable on A. Then if, for all $z \in A$, $f'(z) = 0$ then f is constant on A.

Proof

Suppose that $f = u + iv$. By Theorem 13.16, for all $x + iy \in A$,

$$f'(x + iy) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}.$$

Therefore, on $A \subset \mathbb{R}^2$,

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0 \quad \text{and} \quad \frac{\partial v}{\partial y} + i \frac{\partial u}{\partial y} = 0.$$

Therefore

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0 \quad \text{and} \quad \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0.$$

Lemma 13.26 implies that u and v are constant on A. Therefore f is constant on A. \square

13.28 From now on we shall call a non-empty open connected subset of \mathbb{C} a region of \mathbb{C} and we shall use the word “region” only in this sense.

13.29 Definition

A function $f : \mathbb{C} \to \mathbb{C}$ is said to be holomorphic at $a \in \text{dom}(f)$ if and only if there exists $\rho > 0$ such that

(i) $B(a; \rho) \subset \text{dom}(f)$;

(ii) f is differentiable on $B(a; \rho)$.

13.30 A function f is holomorphic on a set A if and only if, for all $z \in A$, f is holomorphic at z. If A is open then f is holomorphic on A if and only if f is differentiable on A.

13.31 Some authors use regular or analytic instead of holomorphic.

13.32 From now on when we say that a function f is holomorphic on a set A we shall take it to imply that A is a region. Notice that if A is a region then f is differentiable on A if and only if it is holomorphic on A.

13.33 If A is an open disconnected subset of \mathbb{C} then A has an open partition. We can study a function f that is differentiable on A by studying the restriction of f to each set in this partition.
13.34 Because we usually demand that the domain of a holomorphic function is a region some authors call a region a domain.

13.35 Corollary
Suppose that $f : A \to \mathbb{C}$ is a holomorphic function that takes only real values. Then f is a constant function.

Proof
Suppose that $f = u + iv$. Since f takes only real values, for all $z = x + iy \in A$, $v(x, y) = 0$. Since f is differentiable on A, u and v satisfy the Cauchy-Riemann equations on A. Therefore, for all $(x, y) \in A$,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0 \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0.$$

Therefore Theorem 13.27 implies that u is constant on A. Therefore f is constant on A.