8 The Distance from a Point to a Set

8.1 Recall that the Supremum Axiom, also known as the Axiom of Completeness, states that any non-empty set of real numbers that is bounded above has a least upper bound or supremum. A corollary of this axiom states that any non-empty set of real numbers that is bounded below has a greatest lower bound or infimum.

8.2 Definition
Suppose that \(\emptyset \neq A \subset M \) and that \(x \in M \). Then the set of all distances from \(x \) to a point in \(A \) is bounded below by \(0 \). Therefore we can define the distance of \(x \) from \(A \), \(d(x;A) \), to be the greatest lower bound of the set of distances from \(x \) to a point in \(A \). That is,

\[
d(x;A) = \inf \{ d(x,a) \mid a \in A \}.
\]

8.3 \(d(x;A) \), as defined above, is sometimes called the least distance of \(x \) from \(A \).

8.4 Lemma
(i) For all \(x,y \in M \), \(d(x; \{ y \}) = d(x,y) \).

(ii) If \(\emptyset \neq A \subset B \subset M \) then, for all \(x \in M \), \(d(x;A) \geq d(x;B) \).

(iii) If \(a \in A \subset M \) then \(d(a;A) = 0 \).

Proof Exercise. \(\square \)

8.5 Problem
Evaluate each of the following distances in \(\mathbb{E}_1 \):

(i) \(d(0; [1,-\to)) \) where \([1,-\to) = \{ x \in \mathbb{R} \mid x \geq 1 \} \),

(ii) \(d(0; (1,-\to)) \) where \((1,-\to) = \{ x \in \mathbb{R} \mid x > 1 \} \),

(iii) \(d(\sqrt{2}; \mathbb{Q}) \).

\(\square \)

(i) \(d(0; [1,-\to)) = 1 \),

For all \(x \in [1,-\to) \), \(d(0,x) = |x-0| = |x| = x \). Therefore \(\{ d(0,x) \mid x \in [1,-\to) \} = [1,-\to) \). We must show that \(\inf[1,-\to) = 1 \).

But 1 is the minimum of \([1,-\to) \).

Therefore \(\inf[1,-\to) = 1 \), that is, \(d(0,[1,-\to)) = 1 \).

(ii) \(d(0; (1,-\to)) = 1 \),

Here we must show that \(\inf(1,-\to) = 1 \). Clearly, since 1 is a lower bound of \((1,-\to) \),

\[
\inf(1,-\to) \geq 1.
\]

Suppose that \(\epsilon > 0 \). Then \(1+\epsilon \in (1,-\to) \) and thus every lower bound of \((1,-\to) \) must be less than or equal to \(1+\epsilon \). Therefore

\[
\inf(1,-\to) \leq 1+\epsilon.
\]

Since inequality (2) is true for all \(\epsilon > 0 \),

\[
\inf(1,-\to) \leq 1.
\]

Inequalities (1) and (3) imply that

\[
d(0;(1,-\to)) = \inf(1,-\to) = 1.
\]
8.72

(iii) \(d(\sqrt{2}; \mathbb{Q}) = 0. \)

Although \(\sqrt{2} \) is not a rational number we can always find a rational number that is as close to \(\sqrt{2} \) as we wish.

8.6 Notice that \(d(0; [1, \to)) = d(0, 1) = 1 \), that is, the distance from 0 to \([1, \to)\) is the smallest value of \(d(0, x) \) where \(x \in [1, \to) \).

It is also true that \(d(0; (1, \to)) = 1 \) but there is no \(x \in (0, \to) \) such that \(d(0, x) = 1 \).

8.7 Theorem
Suppose that \(\emptyset \neq A \subset M \). Then, for all \(x \in M \), \(d(x; A) = 0 \) if and only if \(x \in \text{Cl}(A) \).

Proof

(i) Suppose that \(x \in \text{Cl}(A) \) that is, \(x \in A \) or \(x \in \text{Bd}(A) \).

Lemma 8.4 (iii) implies that if \(x \in A \) then \(d(x; A) = 0 \). So we can take \(x \) to be a boundary point of \(A \).

Let \(\epsilon > 0 \). Since \(x \) is a boundary point of \(A \), there exists \(y(\epsilon) \in A \) such that \(y(\epsilon) \in B(x; \epsilon) \), that is, there exists \(y(\epsilon) \in A \) such that \(d(x, y(\epsilon)) < \epsilon \). Therefore

\[
d(x; A) = \inf \{ d(x, z) \mid z \in A \} < \epsilon \tag{1}
\]

Since (1) is true for all \(\epsilon > 0 \), \(d(x; A) = 0 \).

(ii) Suppose that \(x \notin \text{Cl}(A) \).

Theorem 5.39 implies that \(x \) is an exterior point of \(A \).

Therefore there exists \(\rho > 0 \) such that \(B(x; \rho) \cap A = \emptyset \).

Therefore, for all \(a \in A \), \(d(x, a) \geq \rho \).

Therefore

\[
d(x; A) = \inf \{ d(x, a) \mid a \in A \} \geq \rho > 0. \tag{\text{□}}
\]

8.8 Corollary
If \(A \) is a non-empty closed subset of \(M \) then, for all \(x \in M \), \(d(x; A) = 0 \) if and only if \(x \in A \). \tag{\text{□}}

8.9 Recall if \(A \) is a subset of \(M \) then

\[
\text{Bd}(A) = \text{Bd}(M \setminus A). \tag{5.37}
\]

Therefore

\[
\text{Cl}(A) \cap \text{Cl}(M \setminus A) = [\text{Int}(A) \cup \text{Bd}(A)] \cap [\text{Int}(M \setminus A) \cup \text{Bd}(M \setminus A)]
\]

\[
= [\text{Int}(A) \cup \text{Bd}(A)] \cap [\text{Ext}(A) \cup \text{Bd}(A)]
\]

\[
= \text{Bd}(A).
\]

In view of Theorem 8.7, this yields the following theorem.

8.10 Theorem
Suppose that \((M, d)\) is a metric space and that \(A \) is a subset of \(M \). Then \(x \in M \) is a boundary point of \(A \) if and only if

\[
d(x; A) = d(x; M \setminus A) = 0. \tag{\text{□}}
\]

8.11 This theorem gives us another definition of a boundary point.
Suppose that (M,d) is a metric space and that $A \subset M$. Then $x \in M$ is a boundary point of A if and only if the distance from x to A and the distance from x to the complement of A are both equal to zero.