9 Finite Symmetric Groups

We study an important class of groups, namely the symmetric group on \(n \) symbols for some positive integer \(n \). Any finite group can be identified with a subgroup of some symmetric group.

Definition 9.1. Let \(X \) be a finite set. A permutation of \(X \) is a bijection from \(X \) onto \(X \).

For example, if \(X = \{1, 2, 3, 4, 5\} \) then the correspondence

\[
1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 1, 4 \mapsto 4, 6 \mapsto 5,
\]

is a permutation of \(X \). We can express this particular permutation as

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 4 & 6 & 5
\end{pmatrix}
\]

Theorem 9.1. The set of all permutations of a finite set \(X \) is a group wrt composition of functions.

Proof. We show that composition of functions is a well-defined operation on \(X \), and leave the remainder of the proof as an exercise.

Let \(\alpha, \beta \) be permutations of \(X \). Given any \(z \in X \), there exists \(y \in X \) such that \(\beta(y) = z \), since \(\beta \) is onto.

Since \(\alpha \) is onto, there exists \(x \in X \) such that \(\alpha(x) = y \). Then

\[
\beta \circ \alpha(x) = \beta(\alpha(x)) = \beta(y) = z,
\]

so \(\beta \circ \alpha \) is onto.

If \(\beta \circ \alpha(x) = \beta \circ \alpha(y) \) for some \(x, y \in X \) then \(\alpha(x) = \alpha(y) \) since \(\beta \) is \(1 \)-1, and hence \(x = y \) since \(\alpha \) is \(1 \)-1. It follows that \(\beta \circ \alpha \) is both \(1 \)-1 and onto, and is therefore a bijection by definition.

Definition 9.2. Let \(X \) be a finite set of size \(n \) for some positive integer \(n \). The group of permutations of \(X \) is denoted by \(S_n \) (or \(\text{Sym}(X) \)), and is called the symmetric group on \(n \) symbols (or letters).

We list the distinct permutations of \(S_3 \).

\[
\begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix}.
\]

Note that \(S_3 \) has exactly \(3! = 6 \) different permutations. This holds in general:

Theorem 9.2. \(S_n \) has exactly \(n! \) distinct elements.

Proof. We simply count the number of different arrays

\[
\begin{pmatrix}
1 & 2 & 3 & \cdots & n \\
\sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n)
\end{pmatrix}
\]

where \(\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\} \) represents a bijection. There are \(n \) ways to define \(\sigma(1) \). Once this symbol has been assigned there remains \(n-1 \) ways to determine \(\sigma(2) \), and thereafter \(n-2 \) ways to determine \(\sigma(3) \). Continuing with this argument we see that there are \(n! = n(n-1)(n-2) \cdots (3)(2)(1) \) different possible ways to define \(\sigma \).

Composition of permutations is computed from right to left. For example, if

\[
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 2 & 3 & 4 & 6
\end{pmatrix}, \quad \beta = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 3 & 2 & 6 & 1
\end{pmatrix},
\]

then \(\beta \circ \alpha \) is given by

\[
\beta \circ \alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 3 & 2 & 6 & 1
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 2 & 3 & 4 & 6
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 3 & 2 & 1
\end{pmatrix}
\]

In fact we adopt a more succinct notation to represent permutations.
Definition 9.3. Let σ be the permutation that maps $a_1 \mapsto a_2, a_2 \mapsto a_3, \ldots, a_{k-1} \mapsto a_k, a_k \mapsto a_1$. We say that σ is a k–cycle, and write $\sigma = (a_1a_2\ldots a_k)$.

The permutations α, β shown above are expressed as

$\alpha = (15432)(6) = (15432), \quad \beta = (156)(24)(3) = (156)(24)$.

A pair of cycles $(a_1a_2\ldots a_s), (b_1b_2\ldots b_t)$ are called disjoint if $a_i \neq b_j$ for any $i \in \{1, \ldots, s\}, j \in \{1, \ldots, t\}$. In general, composition of permutations is not commutative. For example, with α, β as before $\alpha \circ \beta = (14)(23)(56) \neq \beta \circ \alpha = (16)(25)(34)$. However, disjoint cycles do commute.

Theorem 9.3. Every permutation can be expressed as a product of pairwise disjoint cycles. Up to the order of the cycles, and inclusions or exclusions of 1–cycles, this can be done in exactly one way.

So we have a type of unique factorization in S_n. The product of disjoint k–cycles can be compared to a product of relatively prime integers.

By convention, we denote the identity permutation by (1). The inverse of a k–cycle can be expressed as follows:

$$(a_1a_2\ldots a_k)^{-1} = (a_1a_k)(a_2a_{k-1})\cdots(a_{k-1}a_2)(a_k)(a_1).$$

Composing any k–cycle with itself k times results in the identity permutation. Then $(a_1a_2\ldots a_k)^{-1} = (a_1a_2\ldots a_k)^{k-1}$.

Example 9.1. Suppose we wish to solve the equation $((123)(326145))^3z = (152)$ for some permutation for some $z \in S_6$. We’ll start by simplifying the expression

Since (25) is its own inverse, we can solve this equation for unique z as follows:

$$(25)z = (152) \Rightarrow z = (25)(152) = (12).$$

Given a positive integer $n > 1$, the set of permutations of S_n that fixes an given symbol $a \in \{1, \ldots, n\}$ can be identified with S_{n-1}. For this reason we think of S_t as being a subgroup of S_n whenever $t \leq n$. In fact any finite group can be identified with a subgroup of S_n for some positive integer n.

A 2–cycle is called a transposition. Any k–cycle can be expressed as a product of $k - 1$ transpositions:

$$(a_1a_2\ldots a_k) = (a_1a_k)(a_2a_{k-1})\cdots(a_{k-1}a_2)(a_k)(a_1).$$

Although there may be more than one way to factorize a k–cycle as a product of transpositions that are not pairwise disjoint, any cycle (and hence any permutation) is either a product of an even number of transpositions, or of an odd number of transpositions, but not both. If a permutation can be expressed as a product of an even number of transpositions, we say that it is an even permutation. Otherwise we call it an odd permutation.

Theorem 9.4. Let A_n be the set of all even permutations of S_n. Then A_n is a subgroup of S_n.

Proof. The product of a pair of even permutations clearly results in another even permutation. If $\sigma = (a_1a_2)(a_3a_4)\cdots(a_{k-1}a_k)$ then $\sigma^{-1} = (a_{k-1}a_k)(a_{k-2}a_{k-1})\cdots(a_1a_2)$, which is also an even permutation. \qed

Consider the case $n = 4$. We list the elements of A_4:

<table>
<thead>
<tr>
<th>the identity</th>
<th>(12)(12)</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-cycles</td>
<td>(12)(13)</td>
<td>(123), (132), (124), (142), (134), (143), (234), (243)</td>
</tr>
<tr>
<td>disjoint 2-cycles</td>
<td>(12)(34)</td>
<td>(12)(34), (13)(24), (14)(23)</td>
</tr>
</tbody>
</table>

Note that there are exactly $4!/2 = 12$ elements in A_4. In fact, in general, A_n has exactly $n!/2$ elements.

Another important subgroup of S_4 is V_4, the Klein Viergruppe:

$V_4 = \{(1), (12)(34), (13)(24), (14)(23)\},$

it consists of the set of even permutations of S_4 that are products of a pair of disjoint 2–cycles.

29