The mathematics of David W. Lewis

Jean-Pierre Tignol
Université catholique de Louvain Louvain-la-Neuve, Belgium

The Lewisfest, 23 July 2009

David's publications

Items reviewed in Mathematical Reviews (as of July 2009):

- 57 papers (1977-2007)
- 1 book: "Matrix Theory" World Scientific Pub., 1991
- 1 volume of conference proceedings: "Quadratic forms and their applications (Dublin, 1999)" Amer. Math. Soc., 2000

Superficial remarks

- Substantial number of surveys.
- Journals: the local moorings: 7 papers in the Bulletin of the Irish Mathematical Society, 4 papers in the Proceedings of the Royal Irish Academy.
- Collaborators: the Belgian connection: Dejaiffe, De Wannemacker, Tignol, Unger, Van Geel.

Outline

The objects

Quadratic forms ...
... with a noncommutative twist

David's mathematics

Hermitian forms: 1977-1985
Levels of skew fields: 1985-1990
Ring-theoretic results on Witt rings: 1987-1992
Quadratic forms over function fields of conics: 1994-1995
Involutions on central simple algebras: 1999-. . .

The fundamental objects

Quadratic forms + noncommutative twist

Quadratic form $=$ homogeneous polynomial of degree 2

$$
\begin{aligned}
x_{1}^{2}-2 x_{2} x_{3} & \simeq y_{1}^{2}+y_{2}^{2}-y_{3}^{2} \\
a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2} & =\left\langle a_{1}, \ldots, a_{n}\right\rangle
\end{aligned}
$$

Geometric viewpoint

V vector space over $F($ char $\neq 2)$
Quadratic form $=\operatorname{map} q: V \rightarrow F$ such that

$$
b(x, y)=q(x+y)-q(x)-q(y)
$$

is a bilinear pairing $V \times V \rightarrow F$.

The Witt ring

Ernst Witt (1937):

$$
\begin{aligned}
& \left\langle a_{1}, \ldots, a_{n}\right\rangle \perp\left\langle b_{1}, \ldots, b_{m}\right\rangle=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\rangle \\
& \left\langle a_{1}, \ldots, a_{n}\right\rangle \otimes\left\langle b_{1}, \ldots, b_{m}\right\rangle=\left\langle a_{1} b_{1}, \ldots, a_{i} b_{j}, \ldots, a_{n} b_{m}\right\rangle
\end{aligned}
$$

Hyperbolic quadratic form $=\langle 1,-1, \ldots, 1,-1\rangle$
Theorem (Witt cancellation)

$$
\begin{aligned}
& \left\langle a_{1}, \ldots, a_{n}\right\rangle \simeq\left\langle b_{1}, \ldots, b_{n}\right\rangle \text { iff } \\
& \\
& \quad\left\langle a_{1}, \ldots, a_{n}\right\rangle \perp\langle-1\rangle\left\langle b_{1}, \ldots, b_{n}\right\rangle \text { is hyperbolic. }
\end{aligned}
$$

Definitions

q_{1}, q_{2} are Witt-equivalent if $q_{1} \perp\langle-1\rangle q_{2}$ is hyperbolic Witt ring of F :

$$
W F:=\{\text { Witt-equivalence classes of quadratic forms over } F\}
$$

Examples of Witt groups

Example

$W(\mathbb{C})=\mathbb{Z} / 2 \mathbb{Z}, \quad q \mapsto \operatorname{dim} q \bmod 2$.
Proof.
$\left\langle a_{1}, a_{2}\right\rangle \simeq\langle 1,-1\rangle=0$.

Example

$W(\mathbb{R})=\mathbb{Z}, \quad q \mapsto \operatorname{sgn} q=\#\left\{a_{i}>0\right\}-\#\left\{a_{i}<0\right\}$.
Proof.
Sylvester's law of inertia.

Example

$$
\begin{aligned}
& W(\mathbb{Q}) \simeq \mathbb{Z} \oplus\left(\bigoplus_{p} W\left(\mathbb{F}_{p}\right)\right), \\
& \qquad W\left(\mathbb{F}_{p}\right) \simeq \begin{cases}\mathbb{Z} / 2 \mathbb{Z} & \text { if } p=2, \\
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} & \text { if } p \equiv 1 \bmod 4, \\
\mathbb{Z} / 4 \mathbb{Z} & \text { if } p \equiv 3 \bmod 4 .\end{cases}
\end{aligned}
$$

p. 417 in W. Scharlau, Quadratic and Hermitian Forms, Springer, 1985:

$$
\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=\left(x_{1} y_{1}-x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2}
$$

(Diophantus, 3d century)

$$
\begin{aligned}
\left(x_{1}^{2}+\right. & \left.x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)= \\
& \left(x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}\right)^{2} \\
+ & \left(x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2} \\
+ & \left(x_{1} y_{3}+x_{3} y_{1}+x_{4} y_{2}-x_{2} y_{4}\right)^{2} \\
+ & \left(x_{1} y_{4}+x_{4} y_{1}+x_{2} y_{3}-x_{3} y_{2}\right)^{2}
\end{aligned}
$$

(Euler, 1748)

Multiplicative forms

$$
\begin{aligned}
& \left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\right) \\
& \quad\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}+y_{5}^{2}+y_{6}^{2}+y_{7}^{2}+y_{8}^{2}\right)= \\
& \quad\left(x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}-x_{5} y_{5}-x_{6} y_{6}-x_{7} y_{7}-x_{8} y_{8}\right)^{2} \\
& +\left(x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}+x_{5} y_{6}-x_{6} y_{5}-x_{7} y_{8}+x_{8} y_{7}\right)^{2} \\
& +\left(x_{1} y_{3}-x_{2} y_{4}+x_{3} y_{1}+x_{4} y_{2}+x_{5} y_{7}+x_{6} y_{8}-x_{7} y_{5}-x_{8} y_{6}\right)^{2} \\
& +\left(x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1}+x_{5} y_{8}-x_{6} y_{7}+x_{7} y_{6}-x_{8} y_{5}\right)^{2} \\
& +\left(x_{1} y_{5}-x_{2} y_{6}-x_{3} y_{7}-x_{4} y_{8}+x_{5} y_{1}+x_{6} y_{2}+x_{7} y_{3}+x_{8} y_{4}\right)^{2} \\
& +\left(x_{1} y_{6}+x_{2} y_{5}-x_{3} y_{8}+x_{4} y_{7}-x_{5} y_{2}+x_{6} y_{1}-x_{7} y_{4}+x_{8} y_{3}\right)^{2} \\
& +\left(x_{1} y_{7}+x_{2} y_{8}+x_{3} y_{5}-x_{4} y_{6}-x_{5} y_{3}+x_{6} y_{4}+x_{7} y_{1}-x_{8} y_{2}\right)^{2} \\
& +\left(x_{1} y_{8}-x_{2} y_{7}+x_{3} y_{6}+x_{4} y_{5}-x_{5} y_{4}-x_{6} y_{3}+x_{7} y_{2}+x_{8} y_{1}\right)^{2}
\end{aligned}
$$

(Graves, 1843)

Theorem (Hurwitz, 1898)
If there exist bilinear polynomials $f_{1}(x, y), \ldots, f_{n}(x, y)$ such that

$$
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=f_{1}(x, y)^{2}+\cdots+f_{n}(x, y)^{2},
$$

then $n=1,2,4$ or 8 .
Theorem (Pfister, 1965)
For every $n=2^{k}$ there exist rational functions $f_{1}(x, y), \ldots$, $f_{n}(x, y)$ such that

$$
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=f_{1}(x, y)^{2}+\cdots+f_{n}(x, y)^{2} .
$$

The level of a field

Definition
$s(F)=\inf \left\{n \mid-1=x_{1}^{2}+\cdots+x_{n}^{2}\right\}$.
Examples
$s(\mathbb{R})=\infty, s(\mathbb{C})=1, s(\mathbb{Q}(\sqrt{-2}))=2, \ldots$
Theorem (Pfister)
The level of a field is a power of 2 (or ∞).
Proof.
Say $x_{1}^{2}+\cdots+x_{12}^{2}=-1$; then

$$
x_{1}^{2}+\cdots+x_{8}^{2}=-\left(1+x_{9}^{2}+x_{10}^{2}+x_{11}^{2}+x_{12}^{2}\right)
$$

Let $z=1+x_{9}^{2}+x_{10}^{2}+x_{11}^{2}+x_{12}^{2}$; then
$y_{1}^{2}+\cdots+y_{8}^{2}=\left(x_{1}^{2}+\cdots+x_{8}^{2}\right)\left(1+x_{9}^{2}+x_{10}^{2}+x_{11}^{2}+x_{12}^{2}\right)=-z^{2}$.
Hence $\left(\frac{y_{1}}{z}\right)^{2}+\cdots+\left(\frac{y_{8}}{z}\right)^{2}=-1$.

The noncommutative twist

V right vector space over a skew field D
$b: V \times V \rightarrow D$ bilinear: $\quad b(x \alpha, y \beta)=b(x, y) \alpha \beta=b(x, y) \beta \alpha$.
Each pairing b induces

$$
\begin{aligned}
\hat{\hat{b}}: V & \rightarrow V^{*}=\operatorname{Hom}_{D}(V, D), \quad \text { left } D \text {-vector space. } \\
x & \mapsto b(x, \bullet)
\end{aligned}
$$

Definitions

- $D \rightarrow D$ is an involution if for $\alpha, \beta \in D$, $\overline{\alpha+\beta}=\bar{\alpha}+\bar{\beta}, \quad \overline{\alpha \beta}=\bar{\beta} \bar{\alpha}, \quad \overline{\bar{\alpha}}=\alpha$.
$b: V \times V \rightarrow D$ is hermitian if for $\alpha, \beta \in D$ and $x, y \in V$, $b(x \alpha, y \beta)=\bar{\alpha} b(x, y) \beta, \quad b(y, x)=\overline{b(x, y)}$.
$W\left(D,{ }^{-}\right)=$Witt group of hermitian forms for ${ }^{-}$.

David's Hermitian period: 1977-1985

in the wake of his thesis with C.T.C. Wall

Highlight: Exact octagons of Witt groups
Basic observation (Milnor-Husemoller):
if $h: V \times V \rightarrow F(\sqrt{a})$ is a hermitian form, then

$$
\begin{aligned}
& h(x, x)=\overline{h(x, x)} \in F \quad \text { for all } x \in V, \\
& \text { so } x \mapsto h(x, x) \text { is a quadratic form on } V \text { over } F .
\end{aligned}
$$

Exact sequence: $\quad 0 \rightarrow W(F(\sqrt{a}),-) \rightarrow W(F) \rightarrow W(F(\sqrt{a}))$.
David:

$$
\begin{aligned}
0 \rightarrow W(\sqrt{a}),-) \rightarrow W(F) \rightarrow W & (F(\sqrt{a})) \rightarrow W(F) \rightarrow \\
& \rightarrow W(F(\sqrt{a}),-) \rightarrow 0=W^{-1}(F)
\end{aligned}
$$

The exact octagon

For D a quaternion algebra with quadratic subfield L,

- Variants: Witt groups of equivariant forms, of Clifford algebras
- Related to Clifford algebra periodicity
- Deep relation between various types of hermitian forms and general quadratic extensions, used by Bayer-Parimala in their proof of Serre's "Conjecture II" for classical groups

Levels of skew fields: 1985-1990

Idea: extend results on sums of squares to skew fields
Problem: $x^{2} y^{2} \neq(x y)^{2}=x y x y$
For D finite-dimensional over its center F, there is a trace map $\mathrm{Tr}: D \rightarrow F$, hence a quadratic form

$$
q_{D}: D \rightarrow F, \quad q_{D}(x)=\operatorname{Tr}\left(x^{2}\right)
$$

Theorem (Solution of a conjecture of Leep- ShapiroWadsworth)
-1 is a sum of squares in D iff q_{D} is weakly isotropic, i.e. $n \times q_{D}$ is isotropic for some $n \geq 1$.

Levels of skew fields

Definitions
$s(D)=\inf \left\{n \mid-1=x_{1}^{2}+\cdots+x_{n}^{2}\right\}$
$s(D,-)=\inf \left\{n \mid-1=x_{1} \overline{x_{1}}+\cdots+x_{n} \overline{x_{n}}\right\}$

Theorem

For every $k \geq 0$, there exist quaternion division algebras D, D^{\prime} with $s(D)=2^{k}$ and $s\left(D^{\prime}\right)=2^{k}+1$.
For a quaternion division algebra $D, s(D,-)$ is a power of 2 (or $\infty)$.

- Raises interesting questions in relation with trace forms
- Spurred important research activity by Bauwens, Denert, Hoffmann, Koprowski, Krüskemper, Leep, Serhir, Van Geel, Vast, Wadsworth, ...

Ring-theoretic results on Witt rings: 1987-1992

Theorem

For every quadratic form q of dimension n over a field F,

$$
\begin{aligned}
q\left(q^{2}-2^{2}\right)\left(q^{2}-4^{2}\right) \cdots\left(q^{2}-n^{2}\right) & =0 \text { in } W(F) \\
\left(q^{2}-1^{2}\right)\left(q^{2}-3^{2}\right) \cdots\left(q^{2}-n^{2}\right)=0 \text { in even } W(F) & \text { if } n \text { is odd. }
\end{aligned}
$$

Corollary

New proofs of structure theorems for Witt rings:

- no odd torsion, no odd-dimensional zero divisors, no nontrivial idempotents;
- if $W(F)$ contains torsion elements, every even-dimensional form is a zero-divisor;
- and much more.

Annihilating polynomials

Theorem (Conner, 1987)

If q is the trace quadratic form of a separable field extension of degree n, then

$$
\begin{aligned}
q(q-2)(q-4) \cdots(q-n) & =0 \text { in } W(F) \text { if } n \text { is even, } \\
(q-1)(q-3) \cdots(q-n) & =0 \text { in } W(F) \text { if } n \text { is odd. }
\end{aligned}
$$

Improvement (taking into account the Galois group):
Beaulieu-Palfrey (1997)
Further improvement: Lewis-McGarraghy (2000) (using the Burnside ring of a finite group viewed as Grothendieck ring of a category of étale algebras).

Related work: Hurrelbrink, Sładek, Epkenhans, Ongenae-Van Geel, De Wannemacker, ...

Quadratic forms over function fields of conics: 1994-1995

Two joint papers with Van Geel and Hoffmann-Van Geel
Theme: Which quadratic forms become isotropic over $F(x, y)$ where $a x^{2}+b y^{2}=1$?

Obvious answer: those that contain a multiple of $\langle a, b,-1\rangle$.
But there are many more:

- Classification in terms of "splitting sequences" (based on work of Rost)
- Characterization of the 5 -dimensional forms that become isotropic over $F(x, y)$

Involutions on central simple algebras: (1993) 1999-. . .

Every hermitian pairing $h: V \times V \rightarrow D$ induces an adjoint involution $\operatorname{ad}_{h}={ }^{*}: \operatorname{End}_{D} V \rightarrow \operatorname{End}_{D} V$ such that

$$
h(f(x), y)=h\left(x, f^{*}(y)\right) \text { for } x, y \in V, f \in \operatorname{End}_{D} V
$$

hermitian or skew-hermitian forms on V up to a scalar factor

Theorem (Weil, 1960)
Every classical simple linear algebraic group of adjoint type is a group of automorphisms of a central simple algebra with involution. 1990's:

- Schofield-Van den Bergh, Merkurjev: "index reduction formulas" point to a bridge between quadratic forms and linear algebraic groups: involutions as "virtual" quadratic forms
- Knus-Parimala-Sridharan rediscover the discriminant and Clifford algebra of involutions (Jacobson, Tits)

Classification results

A central simple algebra over a field F
Definition (Lewis-Tignol, 1993)
For $\sigma: A \rightarrow A$ involution of the first kind $\left(\left.\sigma\right|_{F}=\mathrm{Id}_{F}\right), P$ ordering on F,

$$
\operatorname{sgn}_{P} \sigma=\sqrt{\operatorname{sgn}_{P} T_{\sigma}} \quad \text { where } T_{\sigma}(x)=\operatorname{Tr}(\sigma(x) x) \text { for } x \in A .
$$

For σ of the second kind: Quéguiner (1995)

Example

$\operatorname{sgn}_{P} \operatorname{ad}_{q}=\left|\operatorname{sgn}_{P} q\right|$
Theorem (Lewis-Tignol, 1999)
If cd $F \leq 2$, involutions on central simple F-algebras are classified by their "classical" invariants.
If $\operatorname{cd} F(\sqrt{-1}) \leq 2$: classification by classical invariants and signatures, provided F is ED (e.g. number fields).

Local properties

- σ totally indefinite: $\operatorname{sgn}_{P} \sigma<\operatorname{deg} A$ for every ordering P
- σ totally hyperbolic: $\operatorname{sgn}_{P} \sigma=0$ for every ordering P

Global properties
$\sigma \otimes t_{n}$ on $A \otimes M_{n}(F)=M_{n}(A)$ is $n \times \sigma$

- σ is weakly isotropic: $\sigma \otimes t_{n}$ isotropic for some n
- σ is weakly hyperbolic: $\sigma \otimes t_{n}$ hyperbolic for some n

Local-global principles
weakly isotropic \Longleftrightarrow totally indefinite: weak Hasse principle weakly hyperbolic \Longleftrightarrow totally hyperbolic: Pfister's local-global principle

Local-global principles

Theorem (Lewis-Scheiderer-Unger)

The weak Hasse principle holds for involutions of the first kind iff F satisfies $E D$.
Note: The weak Hasse principle holds for quadratic forms iff F satisfies SAP. (Elman-Lam-Prestel)
Theorem (Lewis-Unger)
Pfister's local-global principle holds for involutions of any kind.

Local-global principles

Let A be a central simple algebra over a global field.
Theorem (Lewis-Unger-Van Geel)
Orthogonal involutions on A are conjugate iff they are conjugate at every prime \mathfrak{p}, provided their discriminant is not a square at any \mathfrak{p} such that $A_{\mathfrak{p}}$ is not split.

- Originally expressed as a Hasse principle for similarity of skew-hermitian forms
- Corrects a statement made by Hijikata (1963)

To be continued ...

