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David’s publications

Items reviewed in Mathematical Reviews (as of July 2009):

I 57 papers (1977–2007)

I 1 book: “Matrix Theory” World Scientific Pub., 1991

I 1 volume of conference proceedings: “Quadratic forms and
their applications (Dublin, 1999)” Amer. Math. Soc., 2000



Superficial remarks

I Substantial number of surveys.

I Journals: the local moorings: 7 papers in the Bulletin of the
Irish Mathematical Society, 4 papers in the Proceedings of the
Royal Irish Academy.

I Collaborators: the Belgian connection: Dejaiffe, De
Wannemacker, Tignol, Unger, Van Geel.

Outline

The objects
Quadratic forms . . .
. . . with a noncommutative twist

David’s mathematics
Hermitian forms: 1977–1985
Levels of skew fields: 1985–1990
Ring-theoretic results on Witt rings: 1987–1992
Quadratic forms over function fields of conics: 1994–1995
Involutions on central simple algebras: 1999–. . .



The fundamental objects
Quadratic forms + noncommutative twist

Quadratic form = homogeneous polynomial of degree 2

x2
1 − 2x2x3 ' y 2

1 + y 2
2 − y 2

3

a1x2
1 + · · ·+ anx2

n = 〈a1, . . . , an〉

Geometric viewpoint

V vector space over F (char 6= 2)

Quadratic form = map q : V → F such that

b(x , y) = q(x + y)− q(x)− q(y)

is a bilinear pairing V × V → F .

The Witt ring

Ernst Witt (1937):
〈a1, . . . , an〉 ⊥ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉
〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 = 〈a1b1, . . . , aibj , . . . , anbm〉

Hyperbolic quadratic form = 〈1,−1, . . . , 1,−1〉

Theorem (Witt cancellation)

〈a1, . . . , an〉 ' 〈b1, . . . , bn〉 iff
〈a1, . . . , an〉 ⊥ 〈−1〉〈b1, . . . , bn〉 is hyperbolic.

Definitions
q1, q2 are Witt-equivalent if q1 ⊥ 〈−1〉q2 is hyperbolic

Witt ring of F :

WF := {Witt-equivalence classes of quadratic forms over F}



Examples of Witt groups

Example

W (C) = Z/2Z, q 7→ dim q mod 2.

Proof.
〈a1, a2〉 ' 〈1,−1〉 = 0.

Example

W (R) = Z, q 7→ sgn q = #{ai > 0} −#{ai < 0}.

Proof.
Sylvester’s law of inertia.

Example

W (Q) ' Z⊕
(⊕

p W (Fp)
)
,

W (Fp) '


Z/2Z if p = 2,

Z/2Z× Z/2Z if p ≡ 1 mod 4,

Z/4Z if p ≡ 3 mod 4.

p. 417 in W. Scharlau, Quadratic and Hermitian Forms, Springer, 1985:



Multiplicative forms

(x2
1 + x2

2 )(y 2
1 + y 2

2 ) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2

(Diophantus, 3d century)

(x2
1 + x2

2 + x2
3 + x2

4 )(y 2
1 + y 2

2 + y 2
3 + y 2

4 ) =

(x1y1 − x2y2 − x3y3 − x4y4)2

+(x1y2 + x2y1 + x3y4 − x4y3)2

+(x1y3 + x3y1 + x4y2 − x2y4)2

+(x1y4 + x4y1 + x2y3 − x3y2)2

(Euler, 1748)

Multiplicative forms
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1 + x2
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3 +x2

4 + x2
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6 + x2
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(y 2
1 + y 2

2 + y 2
3 + y 2

4 + y 2
5 + y 2

6 + y 2
7 + y 2

8 ) =

(x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7 − x8y8)2

+(x1y2 + x2y1 + x3y4 − x4y3 + x5y6 − x6y5 − x7y8 + x8y7)2

+(x1y3 − x2y4 + x3y1 + x4y2 + x5y7 + x6y8 − x7y5 − x8y6)2

+(x1y4 + x2y3 − x3y2 + x4y1 + x5y8 − x6y7 + x7y6 − x8y5)2

+(x1y5 − x2y6 − x3y7 − x4y8 + x5y1 + x6y2 + x7y3 + x8y4)2

+(x1y6 + x2y5 − x3y8 + x4y7 − x5y2 + x6y1 − x7y4 + x8y3)2

+(x1y7 + x2y8 + x3y5 − x4y6 − x5y3 + x6y4 + x7y1 − x8y2)2

+(x1y8 − x2y7 + x3y6 + x4y5 − x5y4 − x6y3 + x7y2 + x8y1)2

(Graves, 1843)



Multiplicative forms

Theorem (Hurwitz, 1898)

If there exist bilinear polynomials f1(x , y), . . . , fn(x , y) such that

(x2
1 + · · ·+ x2

n )(y 2
1 + · · ·+ y 2

n ) = f1(x , y)2 + · · ·+ fn(x , y)2,

then n = 1, 2, 4 or 8.

Theorem (Pfister, 1965)

For every n = 2k there exist rational functions f1(x , y), . . . ,
fn(x , y) such that

(x2
1 + · · ·+ x2

n )(y 2
1 + · · ·+ y 2

n ) = f1(x , y)2 + · · ·+ fn(x , y)2.

The level of a field

Definition
s(F ) = inf{n | −1 = x2

1 + · · ·+ x2
n}.

Examples

s(R) =∞, s(C) = 1, s
(
Q(
√
−2)

)
= 2, . . .

Theorem (Pfister)

The level of a field is a power of 2 (or ∞).

Proof.
Say x2

1 + · · ·+ x2
12 = −1; then

x2
1 + · · ·+ x2

8 = −(1 + x2
9 + x2

10 + x2
11 + x2

12)
Let z = 1 + x2

9 + x2
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11 + x2
12; then
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8 = (x2
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8 )(1 + x2
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12) = −z2.

Hence
( y1

z

)2
+ · · ·+

( y8
z

)2
= −1.



The noncommutative twist

V right vector space over a skew field D
b : V × V → D bilinear: b(xα, yβ) = b(x , y)αβ = b(x , y)βα.
Each pairing b induces

b̂ : V → V ∗ = HomD(V ,D),
x 7→ b(x , •)

left D-vector space.

Definitions
: D → D is an involution if for α, β ∈ D,

α + β = α + β, αβ = β α, α = α.

b : V × V → D is hermitian if for α, β ∈ D and x , y ∈ V ,
b(xα, yβ) = αb(x , y)β, b(y , x) = b(x , y).

W (D, ) = Witt group of hermitian forms for .

David’s Hermitian period: 1977–1985
in the wake of his thesis with C.T.C. Wall

Highlight: Exact octagons of Witt groups

Basic observation (Milnor–Husemoller):
if h : V × V → F (

√
a) is a hermitian form, then

h(x , x) = h(x , x) ∈ F for all x ∈ V ,
so x 7→ h(x , x) is a quadratic form on V over F .

Exact sequence: 0→W (F (
√

a), )→W (F )→W
(
F (
√

a)
)
.

David:
0→W (

√
a), )→W (F )→W

(
F (
√

a)
)
→W (F )→

→W (F (
√

a), )→ 0 = W−1(F )



The exact octagon

For D a quaternion algebra with quadratic subfield L,

W (D, ) // W (L, )

((QQQQQQ

W−1(L)

66llllll
W (D, ̂)

��
W−1(D, ̂)

OO

W (L)

vvmmmmmm

W−1(L, )

hhRRRRRR

W−1(D, )oo

I Variants: Witt groups of equivariant forms, of Clifford algebras

I Related to Clifford algebra periodicity

I Deep relation between various types of hermitian forms and
general quadratic extensions, used by Bayer–Parimala in their
proof of Serre’s “Conjecture II” for classical groups

Levels of skew fields: 1985–1990

Idea: extend results on sums of squares to skew fields

Problem: x2y 2 6= (xy)2 = xyxy

For D finite-dimensional over its center F , there is a trace map
Tr : D → F , hence a quadratic form

qD : D → F , qD(x) = Tr(x2).

Theorem (Solution of a conjecture of Leep– Shapiro–
Wadsworth)

−1 is a sum of squares in D iff qD is weakly isotropic, i.e. n × qD

is isotropic for some n ≥ 1.



Levels of skew fields

Definitions
s(D) = inf{n | −1 = x2

1 + · · ·+ x2
n}

s(D, ) = inf{n | −1 = x1x1 + · · ·+ xnxn}

Theorem
For every k ≥ 0, there exist quaternion division algebras D, D ′

with s(D) = 2k and s(D ′) = 2k + 1.
For a quaternion division algebra D, s(D, ) is a power of 2 (or
∞).

I Raises interesting questions in relation with trace forms

I Spurred important research activity by Bauwens, Denert,
Hoffmann, Koprowski, Krüskemper, Leep, Serhir, Van Geel,
Vast, Wadsworth, . . .

Ring-theoretic results on Witt rings: 1987–1992

Theorem
For every quadratic form q of dimension n over a field F ,

q(q2 − 22)(q2 − 42) · · · (q2 − n2) = 0 in W (F ) if n is even,

(q2 − 12)(q2 − 32) · · · (q2 − n2) = 0 in W (F ) if n is odd.

Corollary

New proofs of structure theorems for Witt rings:

I no odd torsion, no odd-dimensional zero divisors, no nontrivial
idempotents;

I if W (F ) contains torsion elements, every even-dimensional
form is a zero-divisor;

I and much more.



Annihilating polynomials

Theorem (Conner, 1987)

If q is the trace quadratic form of a separable field extension of
degree n, then

q(q − 2)(q − 4) · · · (q − n) = 0 in W (F ) if n is even,

(q − 1)(q − 3) · · · (q − n) = 0 in W (F ) if n is odd.

Improvement (taking into account the Galois group):
Beaulieu–Palfrey (1997)

Further improvement: Lewis–McGarraghy (2000) (using the
Burnside ring of a finite group viewed as Grothendieck ring of a
category of étale algebras).

Related work: Hurrelbrink, S ladek, Epkenhans, Ongenae–Van
Geel, De Wannemacker, . . .

Quadratic forms over function fields of conics: 1994–1995

Two joint papers with Van Geel and Hoffmann–Van Geel

Theme: Which quadratic forms become isotropic over F (x , y)
where ax2 + by 2 = 1?

Obvious answer: those that contain a multiple of 〈a, b,−1〉.

But there are many more:

I Classification in terms of “splitting sequences” (based on work
of Rost)

I Characterization of the 5-dimensional forms that become
isotropic over F (x , y)



Involutions on central simple algebras: (1993) 1999–. . .

Every hermitian pairing h : V × V → D induces an adjoint
involution adh = ∗ : EndD V → EndD V such that

h(f (x), y) = h(x , f ∗(y)) for x , y ∈ V , f ∈ EndD V

hermitian or skew-hermitian
forms on V up to a scalar factor

←→ involutions on End V

Theorem (Weil, 1960)

Every classical simple linear algebraic group of adjoint type is a
group of automorphisms of a central simple algebra with involution.

1990’s:

I Schofield–Van den Bergh, Merkurjev: “index reduction
formulas” point to a bridge between quadratic forms and linear
algebraic groups: involutions as “virtual” quadratic forms

I Knus–Parimala–Sridharan rediscover the discriminant and
Clifford algebra of involutions (Jacobson, Tits)

Classification results

A central simple algebra over a field F

Definition (Lewis–Tignol, 1993)

For σ : A→ A involution of the first kind (σ|F = IdF ), P ordering
on F ,

sgnP σ =
√

sgnP Tσ

where Tσ(x) = Tr(σ(x)x) for x ∈ A.

For σ of the second kind: Quéguiner (1995)

Example

sgnP adq = |sgnP q|

Theorem (Lewis–Tignol, 1999)

If cd F ≤ 2, involutions on central simple F -algebras are classified
by their “classical” invariants.
If cd F (

√
−1) ≤ 2: classification by classical invariants and

signatures, provided F is ED (e.g. number fields).



Local-global principles

Local properties

I σ totally indefinite: sgnP σ < deg A for every ordering P

I σ totally hyperbolic: sgnP σ = 0 for every ordering P

Global properties

σ ⊗ tn on A⊗Mn(F ) = Mn(A) is n × σ
I σ is weakly isotropic: σ ⊗ tn isotropic for some n

I σ is weakly hyperbolic: σ ⊗ tn hyperbolic for some n

Local–global principles

weakly isotropic ⇐⇒ totally indefinite: weak Hasse principle
weakly hyperbolic ⇐⇒ totally hyperbolic: Pfister’s local-global
principle

Local-global principles

Theorem (Lewis–Scheiderer–Unger)

The weak Hasse principle holds for involutions of the first kind iff
F satisfies ED.

Note: The weak Hasse principle holds for quadratic forms iff F
satisfies SAP. (Elman–Lam–Prestel)

Theorem (Lewis–Unger)

Pfister’s local-global principle holds for involutions of any kind.



Local-global principles

Let A be a central simple algebra over a global field.

Theorem (Lewis–Unger–Van Geel)

Orthogonal involutions on A are conjugate iff they are conjugate at
every prime p, provided their discriminant is not a square at any p

such that Ap is not split.

I Originally expressed as a Hasse principle for similarity of
skew-hermitian forms

I Corrects a statement made by Hijikata (1963)

To be continued . . .
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