The mathematics of David W. Lewis

Jean-Pierre Tignol

Université catholique de Louvain Louvain-la-Neuve, Belgium

The Lewisfest, 23 July 2009

David's publications

Items reviewed in *Mathematical Reviews* (as of July 2009):

- ▶ 57 papers (1977–2007)
- ▶ 1 book: "Matrix Theory" World Scientific Pub., 1991
- I volume of conference proceedings: "Quadratic forms and their applications (Dublin, 1999)" Amer. Math. Soc., 2000

Superficial remarks

- Substantial number of surveys.
- Journals: the local moorings: 7 papers in the Bulletin of the Irish Mathematical Society, 4 papers in the Proceedings of the Royal Irish Academy.
- Collaborators: the Belgian connection: Dejaiffe, De Wannemacker, Tignol, Unger, Van Geel.

Outline

The objects Quadratic forms with a noncommutative twist

David's mathematics

Hermitian forms: 1977–1985 Levels of skew fields: 1985–1990 Ring-theoretic results on Witt rings: 1987–1992 Quadratic forms over function fields of conics: 1994–1995 Involutions on central simple algebras: 1999–...

The fundamental objects

Quadratic forms + noncommutative twist

Quadratic form = homogeneous polynomial of degree 2

$$x_1^2 - 2x_2x_3 \simeq y_1^2 + y_2^2 - y_3^2$$

 $a_1x_1^2 + \dots + a_nx_n^2 = \langle a_1, \dots, a_n \rangle$

Geometric viewpoint

V vector space over F (char \neq 2)

Quadratic form = map $q: V \rightarrow F$ such that

$$b(x,y) = q(x+y) - q(x) - q(y)$$

is a bilinear pairing $V \times V \rightarrow F$.

The Witt ring

Ernst Witt (1937): $\langle a_1, \ldots, a_n \rangle \perp \langle b_1, \ldots, b_m \rangle = \langle a_1, \ldots, a_n, b_1, \ldots, b_m \rangle$ $\langle a_1, \ldots, a_n \rangle \otimes \langle b_1, \ldots, b_m \rangle = \langle a_1 b_1, \ldots, a_i b_j, \ldots, a_n b_m \rangle$

Hyperbolic quadratic form $=\langle 1,-1,\ldots,1,-1
angle$

Theorem (Witt cancellation)

 $\langle a_1, \dots, a_n \rangle \simeq \langle b_1, \dots, b_n \rangle \text{ iff} \ \langle a_1, \dots, a_n \rangle \perp \langle -1 \rangle \langle b_1, \dots, b_n \rangle \text{ is hyperbolic.}$

Definitions

$$q_1$$
, q_2 are *Witt-equivalent* if $q_1 \perp \langle -1 \rangle q_2$ is hyperbolic

Witt ring of *F*:

 $WF := \{Witt-equivalence classes of quadratic forms over F\}$

Examples of Witt groups

Example

 $W(\mathbb{C}) = \mathbb{Z}/2\mathbb{Z}, \quad q \mapsto \dim q \mod 2.$

Proof.

 $\langle a_1,a_2
angle\simeq \langle 1,-1
angle=0.$

Example

$$W(\mathbb{R})=\mathbb{Z}, \quad q\mapsto \operatorname{sgn} q=\#\{a_i>0\}-\#\{a_i<0\}.$$

Proof.

Sylvester's law of inertia.

Example

$$egin{aligned} \mathcal{W}(\mathbb{Q}) &\simeq \mathbb{Z} \oplus ig(igoplus_p \mathcal{W}(\mathbb{F}_p)ig), \ &W(\mathbb{F}_p) &\simeq egin{cases} \mathbb{Z}/2\mathbb{Z} & ext{if } p \equiv 2, \ \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z} & ext{if } p \equiv 1 ext{ mod } 4, \ \mathbb{Z}/4\mathbb{Z} & ext{if } p \equiv 3 ext{ mod } 4. \end{aligned}$$

p. 417 in W. Scharlau, Quadratic and Hermitian Forms, Springer, 1985:

Multiplicative forms

$$(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1y_1 - x_2y_2)^2 + (x_1y_2 + x_2y_1)^2$$

(Diophantus, 3d century)

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = (x_1y_1 - x_2y_2 - x_3y_3 - x_4y_4)^2 +(x_1y_2 + x_2y_1 + x_3y_4 - x_4y_3)^2 +(x_1y_3 + x_3y_1 + x_4y_2 - x_2y_4)^2 +(x_1y_4 + x_4y_1 + x_2y_3 - x_3y_2)^2$$

(Euler, 1748)

Multiplicative forms

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2) (y_1^2 + y_2^2 + y_3^2 + y_4^2 + y_5^2 + y_6^2 + y_7^2 + y_8^2) = (x_1y_1 - x_2y_2 - x_3y_3 - x_4y_4 - x_5y_5 - x_6y_6 - x_7y_7 - x_8y_8)^2 + (x_1y_2 + x_2y_1 + x_3y_4 - x_4y_3 + x_5y_6 - x_6y_5 - x_7y_8 + x_8y_7)^2 + (x_1y_3 - x_2y_4 + x_3y_1 + x_4y_2 + x_5y_7 + x_6y_8 - x_7y_5 - x_8y_6)^2 + (x_1y_4 + x_2y_3 - x_3y_2 + x_4y_1 + x_5y_8 - x_6y_7 + x_7y_6 - x_8y_5)^2 + (x_1y_5 - x_2y_6 - x_3y_7 - x_4y_8 + x_5y_1 + x_6y_2 + x_7y_3 + x_8y_4)^2 + (x_1y_6 + x_2y_5 - x_3y_8 + x_4y_7 - x_5y_2 + x_6y_1 - x_7y_4 + x_8y_3)^2 + (x_1y_7 + x_2y_8 + x_3y_5 - x_4y_6 - x_5y_3 + x_6y_4 + x_7y_1 - x_8y_2)^2 + (x_1y_8 - x_2y_7 + x_3y_6 + x_4y_5 - x_5y_4 - x_6y_3 + x_7y_2 + x_8y_1)^2$$

(Graves, 1843)

Multiplicative forms

Theorem (Hurwitz, 1898)

If there exist bilinear polynomials $f_1(x, y), \ldots, f_n(x, y)$ such that

$$(x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2) = f_1(x, y)^2 + \cdots + f_n(x, y)^2,$$

then n = 1, 2, 4 or 8.

Theorem (Pfister, 1965) For every $n = 2^k$ there exist rational functions $f_1(x, y), \ldots, f_n(x, y)$ such that

$$(x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2) = f_1(x, y)^2 + \cdots + f_n(x, y)^2.$$

The level of a field

Definition $s(F) = \inf\{n \mid -1 = x_1^2 + \dots + x_n^2\}.$

Examples $s(\mathbb{R}) = \infty$, $s(\mathbb{C}) = 1$, $s(\mathbb{Q}(\sqrt{-2})) = 2$, ...

Theorem (Pfister) The level of a field is a power of 2 (or ∞).

Proof. Say $x_1^2 + \dots + x_{12}^2 = -1$; then $x_1^2 + \dots + x_8^2 = -(1 + x_9^2 + x_{10}^2 + x_{11}^2 + x_{12}^2)$ Let $z = 1 + x_9^2 + x_{10}^2 + x_{11}^2 + x_{12}^2$; then $y_1^2 + \dots + y_8^2 = (x_1^2 + \dots + x_8^2)(1 + x_9^2 + x_{10}^2 + x_{11}^2 + x_{12}^2) = -z^2$. Hence $(\frac{y_1}{z})^2 + \dots + (\frac{y_8}{z})^2 = -1$.

The noncommutative twist

V right vector space over a skew field D $b: V \times V \rightarrow D$ bilinear: $b(x\alpha, y\beta) = b(x, y)\alpha\beta = b(x, y)\beta\alpha$. Each pairing b induces $\hat{b}: V \rightarrow V^* = \operatorname{Hom}_D(V, D),$ left D-vector space. $x \mapsto b(x, \bullet)$

Definitions

$$\stackrel{-:}{\longrightarrow} D \text{ is an involution if for } \alpha, \ \beta \in D, \\ \overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}, \quad \overline{\alpha \beta} = \overline{\beta} \,\overline{\alpha}, \quad \overline{\overline{\alpha}} = \alpha$$

b: $V \times V \to D$ is hermitian if for α , $\beta \in D$ and x, $y \in V$, $b(x\alpha, y\beta) = \overline{\alpha}b(x, y)\beta$, $b(y, x) = \overline{b(x, y)}$.

W(D, -) = Witt group of hermitian forms for -.

David's Hermitian period: 1977–1985

in the wake of his thesis with C.T.C. Wall

Highlight: Exact octagons of Witt groups

Basic observation (Milnor–Husemoller): if $h: V \times V \to F(\sqrt{a})$ is a hermitian form, then $h(x,x) = \overline{h(x,x)} \in F$ for all $x \in V$, so $x \mapsto h(x,x)$ is a quadratic form on V over F.

Exact sequence: $0 \to W(F(\sqrt{a}), -) \to W(F) \to W(F(\sqrt{a}))$.

David:

$$0 o W(\sqrt{a}), \overline{}) o W(F) o W(F(\sqrt{a})) o W(F) o \ o W(F(\sqrt{a}), \overline{}) o 0 = W^{-1}(F)$$

The exact octagon

For D a quaternion algebra with quadratic subfield L,

- Variants: Witt groups of equivariant forms, of Clifford algebras
- Related to Clifford algebra periodicity
- Deep relation between various types of hermitian forms and general quadratic extensions, used by Bayer–Parimala in their proof of Serre's "Conjecture II" for classical groups

Levels of skew fields: 1985-1990

Idea: extend results on sums of squares to skew fields

Problem: $x^2y^2 \neq (xy)^2 = xyxy$

For D finite-dimensional over its center F, there is a trace map Tr: $D \rightarrow F$, hence a quadratic form

 $q_D \colon D \to F$, $q_D(x) = \operatorname{Tr}(x^2)$.

Theorem (Solution of a conjecture of Leep– Shapiro– Wadsworth)

-1 is a sum of squares in D iff q_D is weakly isotropic, i.e. $n \times q_D$ is isotropic for some $n \ge 1$.

Levels of skew fields

Definitions $s(D) = \inf\{n \mid -1 = x_1^2 + \dots + x_n^2\}$ $s(D, -) = \inf\{n \mid -1 = x_1\overline{x_1} + \dots + x_n\overline{x_n}\}$

Theorem

For every $k \ge 0$, there exist quaternion division algebras D, D' with $s(D) = 2^k$ and $s(D') = 2^k + 1$. For a quaternion division algebra D, s(D, -) is a power of 2 (or ∞).

- Raises interesting questions in relation with trace forms
- Spurred important research activity by Bauwens, Denert, Hoffmann, Koprowski, Krüskemper, Leep, Serhir, Van Geel, Vast, Wadsworth, ...

Ring-theoretic results on Witt rings: 1987–1992

Theorem

For every quadratic form q of dimension n over a field F,

$$q(q^2 - 2^2)(q^2 - 4^2) \cdots (q^2 - n^2) = 0$$
 in $W(F)$ if n is even,
 $(q^2 - 1^2)(q^2 - 3^2) \cdots (q^2 - n^2) = 0$ in $W(F)$ if n is odd.

Corollary

New proofs of structure theorems for Witt rings:

- no odd torsion, no odd-dimensional zero divisors, no nontrivial idempotents;
- if W(F) contains torsion elements, every even-dimensional form is a zero-divisor;
- and much more.

Annihilating polynomials

Theorem (Conner, 1987)

If q is the trace quadratic form of a separable field extension of degree n, then

$$q(q-2)(q-4)\cdots(q-n) = 0$$
 in $W(F)$ if n is even,
 $(q-1)(q-3)\cdots(q-n) = 0$ in $W(F)$ if n is odd.

Improvement (taking into account the Galois group): Beaulieu–Palfrey (1997)

Further improvement: Lewis–McGarraghy (2000) (using the Burnside ring of a finite group viewed as Grothendieck ring of a category of étale algebras).

Related work: Hurrelbrink, Sładek, Epkenhans, Ongenae–Van Geel, De Wannemacker, ...

Quadratic forms over function fields of conics: 1994–1995

Two joint papers with Van Geel and Hoffmann-Van Geel

Theme: Which quadratic forms become isotropic over F(x, y) where $ax^2 + by^2 = 1$?

Obvious answer: those that contain a multiple of $\langle a, b, -1 \rangle$.

But there are many more:

- Classification in terms of "splitting sequences" (based on work of Rost)
- Characterization of the 5-dimensional forms that become isotropic over F(x, y)

Involutions on central simple algebras: (1993) 1999–...

Every hermitian pairing $h: V \times V \rightarrow D$ induces an *adjoint* involution $ad_h = {}^*: End_D V \rightarrow End_D V$ such that $h(f(x), y) = h(x, f^*(y))$ for $x, y \in V, f \in End_D V$

hermitian or skew-hermitian forms on V up to a scalar factor

involutions on End V

Theorem (Weil, 1960)

Every classical simple linear algebraic group of adjoint type is a group of automorphisms of a central simple algebra with involution. **1990's:**

- Schofield–Van den Bergh, Merkurjev: "index reduction formulas" point to a bridge between quadratic forms and linear algebraic groups: involutions as "virtual" quadratic forms
- Knus–Parimala–Sridharan rediscover the discriminant and Clifford algebra of involutions (Jacobson, Tits)

Classification results

A central simple algebra over a field F

Definition (Lewis-Tignol, 1993)

For $\sigma: A \to A$ involution of the first kind $(\sigma|_F = Id_F)$, P ordering on F,

$$\operatorname{sgn}_P \sigma = \sqrt{\operatorname{sgn}_P T_\sigma}$$

where $T_\sigma(x) = \operatorname{Tr}(\sigma(x)x)$ for $x \in A$.

For σ of the second kind: Quéguiner (1995)

Example

 $\operatorname{sgn}_P\operatorname{ad}_q = |\operatorname{sgn}_P q|$

Theorem (Lewis-Tignol, 1999)

If cd $F \leq 2$, involutions on central simple F-algebras are classified by their "classical" invariants. If cd $F(\sqrt{-1}) \leq 2$: classification by classical invariants and signatures, provided F is ED (e.g. number fields).

Local-global principles

Local properties

- σ totally indefinite: sgn_P σ < deg A for every ordering P
- σ totally hyperbolic: sgn_P $\sigma = 0$ for every ordering P

Global properties

 $\sigma \otimes t_n$ on $A \otimes M_n(F) = M_n(A)$ is $n \times \sigma$

- σ is weakly isotropic: $\sigma \otimes t_n$ isotropic for some n
- σ is weakly hyperbolic: $\sigma \otimes t_n$ hyperbolic for some n

Local–global principles

weakly isotropic \iff totally indefinite: weak Hasse principle weakly hyperbolic \iff totally hyperbolic: Pfister's local-global principle

Local-global principles

Theorem (Lewis-Scheiderer-Unger)

The weak Hasse principle holds for involutions of the first kind iff *F* satisfies *ED*.

Note: The weak Hasse principle holds for quadratic forms iff F satisfies SAP. (Elman–Lam–Prestel)

Theorem (Lewis–Unger)

Pfister's local-global principle holds for involutions of any kind.

Local-global principles

Let A be a central simple algebra over a global field.

Theorem (Lewis–Unger–Van Geel)

Orthogonal involutions on A are conjugate iff they are conjugate at every prime \mathfrak{p} , provided their discriminant is not a square at any \mathfrak{p} such that $A_{\mathfrak{p}}$ is not split.

- Originally expressed as a Hasse principle for similarity of skew-hermitian forms
- Corrects a statement made by Hijikata (1963)

To be continued ...