The virtues of similarity of orthogonal representations

July 24, 2009

- G is a finite group, of order $|G|$
- G is a finite group, of order $|G|$
- K is a field
- of characteristic 0 or
- prelatively prime to $|G|$
so the group algebra $K G$ is a separable algebra.

Let V be a finite dimensional vector space over K, and $b: V \times V \rightarrow K$ a nonsingular symmetric bilinear form. An orthogonal representation is a homomorphism

$$
\begin{equation*}
\rho: G \rightarrow \mathrm{O}(V, b) \tag{1}
\end{equation*}
$$

into the orthogonal group of b.

Let V be a finite dimensional vector space over K, and $b: V \times V \rightarrow K$ a nonsingular symmetric bilinear form. An orthogonal representation is a homomorphism

$$
\begin{equation*}
\rho: G \rightarrow \mathrm{O}(V, b) \tag{1}
\end{equation*}
$$

into the orthogonal group of b.

Two orthogonal representations

$$
\rho: G \rightarrow \mathrm{O}(V, b) \text { and } \sigma: G \rightarrow \mathrm{O}(W, c)
$$

are equivalent if there is an isometry $\varphi:(V, b) \rightarrow(W, c)$ which commutes with the action of G.

Notation: \cong stands for equivalence, of forms or representations.

If $\alpha_{0} \in \dot{K}$, then

$$
\mathrm{O}\left(V, \alpha_{0} b\right)=\mathrm{O}(V, b)
$$

and so ρ is also an orthogonal representation

$$
\rho: G \rightarrow \mathrm{O}\left(V, \alpha_{0} b\right)
$$

If $\alpha_{0} \in \dot{K}$, then

$$
\mathrm{O}\left(V, \alpha_{0} b\right)=\mathrm{O}(V, b)
$$

and so ρ is also an orthogonal representation

$$
\rho: G \rightarrow \mathrm{O}\left(V, \alpha_{0} b\right)
$$

but is not equivalent to

$$
\rho: G \rightarrow \mathrm{O}(V, b)
$$

if $\left(V, \alpha_{0} b\right)$ is not equivalent to (V, b).

If $\alpha_{0} \in \dot{K}$, then

$$
\mathrm{O}\left(V, \alpha_{0} b\right)=\mathrm{O}(V, b)
$$

and so ρ is also an orthogonal representation

$$
\rho: G \rightarrow \mathrm{O}\left(V, \alpha_{0} b\right),
$$

but is not equivalent to

$$
\rho: G \rightarrow \mathrm{O}(V, b)
$$

if $\left(V, \alpha_{0} b\right)$ is not equivalent to (V, b).
Definition. The orthogonal representations

$$
\rho: G \rightarrow \mathrm{O}(V, b) \text { and } \sigma: G \rightarrow \mathrm{O}(W, c)
$$

are said to be similar if there is a similarity $\varphi:(V, b) \rightarrow(W, c)$ which commutes with the action of G. This means that there is some $\alpha_{0} \in \dot{K}$ such that

$$
c\left(\varphi v, \varphi v^{\prime}\right)=\alpha_{0} b\left(v, v^{\prime}\right) \quad \text { for all } v, v^{\prime} \in V .
$$

Notation: \simeq stands for similarity of quadratic spaces or of orthogonal representations.

Notation: \simeq stands for similarity of quadratic spaces or of orthogonal representations.

One immediately notices that a Witt-Grothendieck group cannot be defined in the obvious way, not even for symmetric bilinear forms since, e.g., if $K=\mathbb{Q}$, then $x^{2} \simeq x^{2}$ and $y^{2} \simeq 2 y^{2}$, but $x^{2}+y^{2} \not 千 x^{2}+2 y^{2}$.

Notation: \simeq stands for similarity of quadratic spaces or of orthogonal representations.

One immediately notices that a Witt-Grothendieck group cannot be defined in the obvious way, not even for symmetric bilinear forms since, e.g., if $K=\mathbb{Q}$, then $x^{2} \simeq x^{2}$ and $y^{2} \simeq 2 y^{2}$, but $x^{2}+y^{2} \nsucceq x^{2}+2 y^{2}$.

But similarity is better suited to a multiplication of forms, in a sense to be defined.

Three category isomorphisms

Three category isomorphisms

The category of linear representations over K is isomorphic to the category of finitely generated KG-modules.

Three category isomorphisms

The category of linear representations over K is isomorphic to the category of finitely generated $K G$-modules.
The group algebra $K G$ has a canonical K-involution:

$$
\overline{\sum_{s} \alpha_{s} s}=\sum_{s} \alpha_{s} S^{-1}
$$

Three category isomorphisms

The category of linear representations over K is isomorphic to the category of finitely generated $K G$-modules.
The group algebra $K G$ has a canonical K-involution:

$$
\overline{\sum_{s} \alpha_{s} s}=\sum_{s} \alpha_{s} s^{-1}
$$

Let $\rho: G \rightarrow \mathrm{O}(V, b)$ be an orthogonal representation. Define

$$
\hat{b}\left(v, v^{\prime}\right)=\sum_{s} b\left(v, \rho(s) v^{\prime}\right) s \in K G .
$$

Three category isomorphisms

The category of linear representations over K is isomorphic to the category of finitely generated $K G$-modules.
The group algebra $K G$ has a canonical K-involution:

$$
\overline{\sum_{s} \alpha_{s} s}=\sum_{s} \alpha_{s} s^{-1}
$$

Let $\rho: G \rightarrow \mathrm{O}(V, b)$ be an orthogonal representation. Define

$$
\hat{b}\left(v, v^{\prime}\right)=\sum_{s} b\left(v, \rho(s) v^{\prime}\right) s \in K G
$$

Then

$$
\hat{b}: V \times V \rightarrow\left(K G,^{-}\right)
$$

is a nonsingular Hermitian form.

Theorem: The category of orthogonal representations is isomorphic to the category of nonsingular Hermitian forms over $\left(K G,{ }^{-}\right)$via $\rho \rightsquigarrow \hat{b}$.

Theorem: The category of orthogonal representations is isomorphic to the category of nonsingular Hermitian forms over $\left(K G,{ }^{-}\right)$via $\rho \rightsquigarrow \hat{b}$.

Theorem: The category of orthogonal representations under similarity is isomorphic to the category of nonsingular Hermitian forms over $\left(K G,{ }^{-}\right)$under similarity via $\rho \rightsquigarrow \hat{b}$.

Theorem: The category of orthogonal representations is isomorphic to the category of nonsingular Hermitian forms over $\left(K G,^{-}\right)$via $\rho \rightsquigarrow \hat{b}$.

Theorem: The category of orthogonal representations under similarity is isomorphic to the category of nonsingular Hermitian forms over $\left(K G,^{-}\right)$under similarity via $\rho \rightsquigarrow \hat{b}$.

Proof: One checks easily that $\varphi: V \rightarrow W$ is a $K G$-linear similarity between (V, b) and (W, c) if and only if φ is a similarity between (V, \hat{b}) and (W, \hat{c}).

Reduction to simple algebras.

The K-algebra $K G$ is separable and so factors into a direct sum

$$
K G=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{r}
$$

of simple (and separable) algebras - the "isotypic components" of $K G$.

Reduction to simple algebras.

The K-algebra $K G$ is separable and so factors into a direct sum

$$
K G=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{r}
$$

of simple (and separable) algebras - the "isotypic components" of $K G$.

Thus

$$
\left(K G,^{-}\right)=\left(B_{1},,^{-}\right) \oplus\left(B_{2},{ }^{-}\right) \oplus \cdots \oplus\left(B_{t}^{-}\right)
$$

where each B_{i} is either a simple component A_{j} such that $\bar{A}_{j}=A_{j}$ or is a direct sum $A_{j} \oplus \bar{A}_{j}$ of two of them.

Reduction to simple algebras.

The K-algebra $K G$ is separable and so factors into a direct sum

$$
K G=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{r}
$$

of simple (and separable) algebras - the "isotypic components" of $K G$.

Thus

$$
\left(K G,^{-}\right)=\left(B_{1},-\right) \oplus\left(B_{2},,^{-}\right) \oplus \cdots \oplus\left(B_{t}^{-}\right)
$$

where each B_{i} is either a simple component A_{j} such that $\bar{A}_{j}=A_{j}$ or is a direct sum $A_{j} \oplus \bar{A}_{j}$ of two of them.

If V is a $K G$-module, there is a corresponding decomposition

$$
V=B_{1} V \oplus B_{2} V \oplus \cdots B_{t} V
$$

into "involution isotypic" components of V.

Since

$$
\hat{b}\left(B_{i} V, B_{j} V\right)=B_{i} \hat{b}(V, V) B_{j},
$$

Since

$$
\hat{b}\left(B_{i} V, B_{j} V\right)=B_{i} \hat{b}(V, V) B_{j},
$$

$\hat{b}\left(B_{i} V, B_{i} V\right) \subset B_{i}$ and $\hat{b}\left(B_{i} V, B_{j} V\right)=0$ if $i \neq j$.

Since

$$
\hat{b}\left(B_{i} V, B_{j} V\right)=B_{i} \hat{b}(V, V) B_{j},
$$

$$
\hat{b}\left(B_{i} V, B_{i} V\right) \subset B_{i} \quad \text { and } \quad \hat{b}\left(B_{i} V, B_{j} V\right)=0 \text { if } i \neq j .
$$

Thus

$$
V=B_{1} V \perp B_{2} V \perp \cdots \perp B_{t} V
$$

with respect to \hat{b} (or b) and

$$
\left.\hat{b}\right|_{B_{i} V \times B_{i} V}: B_{i} V \times B_{i} V \rightarrow\left(B_{i},^{-}\right)
$$

is also a nonsingular Hermitian form.

Any $K G$-homomorphism $\varphi: V \rightarrow W$ takes $B_{i} V$ into $B_{i} W$ for all i,

Any $K G$-homomorphism $\varphi: V \rightarrow W$ takes $B_{i} V$ into $B_{i} W$ for all i, and so

$$
(V, \hat{b}) \simeq(W, \hat{c})
$$

if and only if

$$
\left(B_{i} V,\left.\hat{b}\right|_{B_{i} V \times B_{i} V}\right) \simeq\left(B_{i} W,\left.\hat{c}\right|_{B_{i} W \times B_{i} W}\right)
$$

for all i.

Any $K G$-homomorphism $\varphi: V \rightarrow W$ takes $B_{i} V$ into $B_{i} W$ for all i, and so

$$
(V, \hat{b}) \simeq(W, \hat{c})
$$

if and only if

$$
\left(B_{i} V,\left.\hat{b}\right|_{B_{i} V \times B_{i} V}\right) \simeq\left(B_{i} W,\left.\hat{c}\right|_{B_{i} W \times B_{i} W}\right)
$$

for all i.
The hyperbolic factors ($B_{i}=A_{j} \oplus \bar{A}_{j}$ for some j) can be ignored since for them $\left(B_{i} V,\left.\hat{b}\right|_{B_{i} V \times B_{i} V}\right) \simeq\left(B_{i} W,\left.\hat{c}\right|_{B_{i} W \times B_{i} W}\right)$ if and only if $B_{i} V$ and $B_{i} W$ have the same length.

Any $K G$-homomorphism $\varphi: V \rightarrow W$ takes $B_{i} V$ into $B_{i} W$ for all i, and so

$$
(V, \hat{b}) \simeq(W, \hat{c})
$$

if and only if

$$
\left(B_{i} V,\left.\hat{b}\right|_{B_{i} V \times B_{i} V}\right) \simeq\left(B_{i} W,\left.\hat{c}\right|_{B_{i} W \times B_{i} W}\right)
$$

for all i.
The hyperbolic factors ($B_{i}=A_{j} \oplus \bar{A}_{j}$ for some j) can be ignored since for them $\left(B_{i} V, \hat{\left.\right|_{B_{i}} V \times B_{i} V}\right) \simeq\left(B_{i} W,\left.\hat{c}\right|_{B_{i} W \times B_{i} W}\right)$ if and only if $B_{i} V$ and $B_{i} W$ have the same length.
Thus the similarity problem is reduced to the special case when $V=B V$ for a simple algebra ($B,^{-}$) with involution.

Similarity classes

If $\left(A,{ }^{-}\right)$is an algebra with involution, denote by $\operatorname{Sim}\left(A,^{-}\right)$the set of similarity classes of nonsingular Hermitian forms over $\left(A,^{-}\right)$.

Similarity classes

If $\left(A,^{-}\right)$is an algebra with involution, denote by $\operatorname{Sim}\left(A,{ }^{-}\right)$the set of similarity classes of nonsingular Hermitian forms over $\left(A,{ }^{-}\right)$.

Theorem
Let $\left(A,^{-}\right)$and $\left(B,^{-}\right)$be isomorphic central simple K-algebras with K-involutions. Then there is a canonical bijection

$$
\Phi_{\left(A,^{-}\right),\left(B,^{-}\right)}: \operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{-}\right)
$$

Similarity classes

If $\left(A,^{-}\right)$is an algebra with involution, denote by $\operatorname{Sim}\left(A,^{-}\right)$the set of similarity classes of nonsingular Hermitian forms over $\left(A,{ }^{-}\right)$.

Theorem
Let $\left(A,^{-}\right)$and $\left(B,^{-}\right)$be isomorphic central simple K-algebras with K-involutions. Then there is a canonical bijection

$$
\Phi_{\left(A,^{-}\right),\left(B,^{-}\right)}: \operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{-}\right)
$$

It satisfies

$$
\left.\begin{array}{c}
\Phi_{\left(B,^{-}\right),\left(C,^{-}\right)} \Phi_{\left(A,,^{-}\right),\left(B,^{-}\right)}=\Phi_{\left(A,,^{-}\right),\left(C,^{-}\right)} \\
\left.\Phi_{(A,-}^{-}\right),\left(A,^{-}\right)
\end{array}=\operatorname{id}_{\operatorname{Sim}\left(A,,^{-}\right)}\right)
$$

and

$$
\Phi_{\left(B,^{-}\right),\left(A,^{-}\right)}=\Phi_{\left(A,-{ }^{-}\right),\left(B,^{-}\right)}^{-1}
$$

Let $\varphi:\left(A,^{-}\right) \rightarrow\left(B,^{-}\right)$be an isomorphism. Then if (V, h) is an Hermitian space over $\left(A,{ }^{-}\right)$, first make V into a B-module ${ }^{\varphi} V$ by defining

$$
b . v=\left(\varphi^{-1} b\right) v,
$$

and then define ${ }^{\varphi} h(u, v)=\varphi \circ h(u, v)$. The form ${ }^{\varphi} h:^{\varphi} V \times^{\varphi} V \rightarrow\left(B,^{-}\right)$is a nonsingular Hermitian form, and $h \rightsquigarrow \varphi h$ induces a map

$$
\Phi_{\left(A,^{-}\right),\left(B,^{-}\right)}: \operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{-}\right)
$$

If $\psi:\left(A,{ }^{-}\right) \rightarrow\left(B,{ }^{-}\right)$is another isomorphism, the automorphism $\psi \varphi^{-1}$ of $\left(B,^{-}\right)$is an inner automorphism $b \rightarrow c b c^{-1}$ for some $c \in B^{\times}$satisfying $\bar{c} c \in \dot{K}$, say $\bar{c} c=\gamma$.

If $\psi:\left(A,{ }^{-}\right) \rightarrow\left(B,{ }^{-}\right)$is another isomorphism, the automorphism $\psi \varphi^{-1}$ of $\left(B,^{-}\right)$is an inner automorphism $b \rightarrow c b c^{-1}$ for some $c \in B^{\times}$satisfying $\bar{c} c \in \dot{K}$, say $\bar{c} c=\gamma$. It follows that $v \rightarrow c . v$ is a B-linear map ${ }^{\psi} V \rightarrow^{\varphi} V$ and furthermore

$$
\psi_{f}(u, v)=\gamma^{-1 \varphi_{f}}(c . u, c . v)
$$

If $\psi:\left(A,^{-}\right) \rightarrow\left(B,{ }^{-}\right)$is another isomorphism, the automorphism $\psi \varphi^{-1}$ of $\left(B,{ }^{-}\right)$is an inner automorphism $b \rightarrow c b c^{-1}$ for some $c \in B^{\times}$satisfying $\bar{c} c \in \dot{K}$, say $\bar{c} c=\gamma$. It follows that $v \rightarrow c . v$ is a B-linear map ${ }^{\psi} V \rightarrow^{\varphi} V$ and furthermore

$$
\psi_{f}(u, v)=\gamma^{-1 \varphi_{f}}(c . u, c . v)
$$

Thus ${ }^{\psi_{f}} \simeq \varphi_{f}$

If $\psi:\left(A,^{-}\right) \rightarrow\left(B,{ }^{-}\right)$is another isomorphism, the automorphism $\psi \varphi^{-1}$ of $\left(B,{ }^{-}\right)$is an inner automorphism $b \rightarrow c b c^{-1}$ for some $c \in B^{\times}$satisfying $\bar{c} c \in \dot{K}$, say $\bar{c} c=\gamma$. It follows that $v \rightarrow c . v$ is a B-linear map ${ }^{\psi} V \rightarrow^{\varphi} V$ and furthermore

$$
\psi_{f}(u, v)=\gamma^{-1} \varphi_{f}(c . u, c . v)
$$

Thus ${ }^{\psi_{f}} \simeq{ }^{\varphi_{f}}$ and so $\Phi_{\left(A,,^{-}\right),\left(B,{ }^{-}\right)}$is independent of the isomorphism $\left(A,^{-}\right) \rightarrow\left(B,^{-}\right)$chosen, and it is bijective since the structure transfer via φ^{-1} results in the inverse map

$$
\operatorname{Sim}\left(B,^{-}\right) \rightarrow \operatorname{Sim}\left(A,^{-}\right)
$$

The other properties are easy to verify.

Another canonical bijection

Suppose that $A=\mathrm{M}(n, D)$ where D is a division algebra over K, and that A and D have K-involutions - and ${ }^{*}$ respectively.

Another canonical bijection

Suppose that $A=\mathrm{M}(n, D)$ where D is a division algebra over K, and that A and D have K-involutions - and ${ }^{*}$ respectively. The map $a \rightarrow a^{t *}$ is also a K-involution on A,

Another canonical bijection

Suppose that $A=\mathrm{M}(n, D)$ where D is a division algebra over K, and that A and D have K-involutions - and ${ }^{*}$ respectively. The map $a \rightarrow a^{t *}$ is also a K-involution on A, so by the Skolem-Noether Theorem

$$
\overline{\mathrm{a}}=c_{0}^{-1} a^{t *} c_{0}
$$

for some $c_{0} \in A^{\times}$. It satisfies $c_{0}^{t *}=\varepsilon_{0} c_{0}$ where $\varepsilon_{0}= \pm 1$.

Another canonical bijection

Suppose that $A=\mathrm{M}(n, D)$ where D is a division algebra over K, and that A and D have K-involutions - and ${ }^{*}$ respectively. The map $a \rightarrow a^{t *}$ is also a K-involution on A, so by the Skolem-Noether Theorem

$$
\overline{\mathbf{a}}=c_{0}^{-1} a^{t *} c_{0}
$$

for some $c_{0} \in A^{\times}$. It satisfies $c_{0}^{t *}=\varepsilon_{0} c_{0}$ where $\varepsilon_{0}= \pm 1$.
A finitely generated A-module V is isomorphic to $D^{n \times m}$ for some m (the length of V), so any similarity class in $\operatorname{Sim}\left(\mathrm{M}(n, D),{ }^{-}\right)$contains a form $h: D^{n \times m} \times D^{n \times m} \rightarrow\left(A,^{-}\right)$.

Another canonical bijection

Suppose that $A=\mathrm{M}(n, D)$ where D is a division algebra over K, and that A and D have K-involutions - and ${ }^{*}$ respectively. The map $a \rightarrow a^{t *}$ is also a K-involution on A, so by the Skolem-Noether Theorem

$$
\bar{a}=c_{0}^{-1} a^{t *} c_{0}
$$

for some $c_{0} \in A^{\times}$. It satisfies $c_{0}^{t *}=\varepsilon_{0} c_{0}$ where $\varepsilon_{0}= \pm 1$.
A finitely generated A-module V is isomorphic to $D^{n \times m}$ for some m (the length of V), so any similarity class in $\operatorname{Sim}\left(\mathrm{M}(n, D),{ }^{-}\right)$contains a form $h: D^{n \times m} \times D^{n \times m} \rightarrow\left(A,^{-}\right)$. It can be shown that h is of the form

$$
h(u, v)=u \underline{h} v^{t *} c_{0}
$$

where $\underline{h} \in D^{m \times m}$ - it is the "Gram matrix" of h and also satisfies $\underline{h}^{t *}=\varepsilon_{0} \underline{h}$.

Now suppose that $\left(B,{ }^{\sim}\right)=\left(\mathrm{M}(p, D),{ }^{\sim}\right)$ is another involution algebra of the first kind and of the same type (symplectic or orthogonal) as $\left(A^{-}\right)$,

Now suppose that $\left(B,{ }^{\sim}\right)=\left(\mathrm{M}(p, D),{ }^{\sim}\right)$ is another involution algebra of the first kind and of the same type (symplectic or orthogonal) as $\left(A^{-}\right)$, so for some $d_{0} \in \mathrm{GL}(p, D)$ satisfying $d_{0}^{t *}=\varepsilon_{0} d_{0}$,

$$
\tilde{b}=d_{0}^{-1} b^{t *} d_{0}
$$

Now suppose that $\left(B,{ }^{\sim}\right)=\left(\mathrm{M}(p, D),{ }^{\sim}\right)$ is another involution algebra of the first kind and of the same type (symplectic or orthogonal) as $\left(A^{-}\right)$, so for some $d_{0} \in \mathrm{GL}(p, D)$ satisfying $d_{0}^{t *}=\varepsilon_{0} d_{0}$,

$$
\tilde{b}=d_{0}^{-1} b^{t *} d_{0}
$$

Then the association

$$
u \underline{h} v^{t *} c_{0} \rightsquigarrow x \underline{h y^{t *}} d_{0}
$$

induces a bijection

$$
\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{\sim}\right)
$$

which is independent of the various choices made $-c_{0}, d_{0}$,* and the form h in its similarity class, and so is canonical.

An aside

The ε_{0}-Hermitian form

$$
x \underline{h y^{t *}}, \quad x, y \in D^{1 \times n}
$$

over $\left(D,{ }^{*}\right)$ is, up to a sign, the form over D which is "Morita equivalent" to h.

An aside

The ε_{0}-Hermitian form

$$
x \underline{h y^{t *}}, \quad x, y \in D^{1 \times n}
$$

over $\left(D,{ }^{*}\right)$ is, up to a sign, the form over D which is "Morita equivalent" to h.
Two Hermitian forms over $\left(A,^{-}\right)$are equivalent, respectively similar, if and only if their Morita equivalent forms over $\left(D,{ }^{*}\right)$ are equivalent respectively similar.

The general canonical bijection

Suppose that $\left(A,^{-}\right)$and $\left(B,{ }^{\sim}\right)$ are central simple algebras in the same "involutory Brauer class", i.e. A and B are in the same Brauer class, say as the central division algebra D, and that both are orthogonal or both are symplectic.

The general canonical bijection

Suppose that $\left(A,^{-}\right)$and $\left(B,{ }^{\sim}\right)$ are central simple algebras in the same "involutory Brauer class", i.e. A and B are in the same Brauer class, say as the central division algebra D, and that both are orthogonal or both are symplectic.

Suppose that $\left(A,^{-}\right) \cong\left(\mathrm{M}(n, D),{ }^{-}\right)$and $\left(B,{ }^{\sim}\right) \cong\left(\mathrm{M}(p, D),{ }^{\sim}\right)$. The canonical bijection

$$
\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{\sim}\right)
$$

is defined to be the composite of the canonical bijections

The general canonical bijection

Suppose that $\left(A,^{-}\right)$and $\left(B,{ }^{\sim}\right)$ are central simple algebras in the same "involutory Brauer class", i.e. A and B are in the same Brauer class, say as the central division algebra D, and that both are orthogonal or both are symplectic.

Suppose that $\left(A,^{-}\right) \cong\left(\mathrm{M}(n, D),{ }^{-}\right)$and $\left(B,{ }^{\sim}\right) \cong\left(\mathrm{M}(p, D),{ }^{\sim}\right)$. The canonical bijection

$$
\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{\sim}\right)
$$

is defined to be the composite of the canonical bijections

$$
\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(\mathrm{M}(n, D),{ }^{-}\right)
$$

The general canonical bijection

Suppose that $\left(A,^{-}\right)$and $\left(B,{ }^{\sim}\right)$ are central simple algebras in the same "involutory Brauer class", i.e. A and B are in the same Brauer class, say as the central division algebra D, and that both are orthogonal or both are symplectic.

Suppose that $\left(A,^{-}\right) \cong\left(\mathrm{M}(n, D),{ }^{-}\right)$and $\left(B,{ }^{\sim}\right) \cong\left(\mathrm{M}(p, D),{ }^{\sim}\right)$. The canonical bijection

$$
\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{\sim}\right)
$$

is defined to be the composite of the canonical bijections

$$
\begin{aligned}
\operatorname{Sim}\left(A,,^{-}\right) & \rightarrow \operatorname{Sim}\left(\mathrm{M}(n, D),,^{-}\right) \\
& \rightarrow \operatorname{Sim}\left(\mathrm{M}(p, D),^{\sim}\right)
\end{aligned}
$$

The general canonical bijection

Suppose that $\left(A,^{-}\right)$and $\left(B,{ }^{\sim}\right)$ are central simple algebras in the same "involutory Brauer class", i.e. A and B are in the same Brauer class, say as the central division algebra D, and that both are orthogonal or both are symplectic.

Suppose that $\left(A,^{-}\right) \cong\left(\mathrm{M}(n, D),{ }^{-}\right)$and $\left(B,{ }^{\sim}\right) \cong\left(\mathrm{M}(p, D),{ }^{\sim}\right)$. The canonical bijection

$$
\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{\sim}\right)
$$

is defined to be the composite of the canonical bijections

$$
\begin{aligned}
\operatorname{Sim}\left(A,^{-}\right) & \rightarrow \operatorname{Sim}\left(\mathrm{M}(n, D),{ }^{-}\right) \\
& \rightarrow \operatorname{Sim}(\mathrm{M}(p, D), \sim) \\
& \rightarrow \operatorname{Sim}\left(B,^{\sim}\right)
\end{aligned}
$$

The general canonical bijection has the expected properties:

- the composition of two of them is also one,
- $\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(A,^{-}\right)$is the identity, and
- $\operatorname{Sim}\left(B,^{\sim}\right) \rightarrow \operatorname{Sim}\left(A,^{-}\right)$is the inverse of $\operatorname{Sim}\left(A,^{-}\right) \rightarrow \operatorname{Sim}\left(B,^{\sim}\right)$.

The product of forms

Let $\left(A,^{-}\right)$and $\left(B,^{\sim}\right)$ be central simple algebras over K with K-involutions, and let $f: V \times V \rightarrow\left(A,{ }^{-}\right)$and $g: W \times W \rightarrow\left(B,{ }^{\sim}\right)$ be nonsingular Hermitian forms.

The product of forms

Let $\left(A,^{-}\right)$and $\left(B,{ }^{\sim}\right)$ be central simple algebras over K with K-involutions, and let $f: V \times V \rightarrow\left(A,^{-}\right)$and
$g: W \times W \rightarrow\left(B,{ }^{\sim}\right)$ be nonsingular Hermitian forms. Then

$$
(f \otimes g)\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right)=f\left(v, v^{\prime}\right) \otimes g\left(w, w^{\prime}\right)
$$

defines a nonsingular Hermitian form

$$
f \otimes g:(V \otimes W) \times(V \otimes W) \rightarrow\left(A,,^{-}\right) \otimes\left(B,^{\sim}\right)
$$

The product of forms

Let $\left(A,^{-}\right)$and $\left(B,{ }^{\sim}\right)$ be central simple algebras over K with K-involutions, and let $f: V \times V \rightarrow\left(A,{ }^{-}\right)$and
$g: W \times W \rightarrow\left(B,{ }^{\sim}\right)$ be nonsingular Hermitian forms. Then

$$
(f \otimes g)\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right)=f\left(v, v^{\prime}\right) \otimes g\left(w, w^{\prime}\right)
$$

defines a nonsingular Hermitian form

$$
f \otimes g:(V \otimes W) \times(V \otimes W) \rightarrow\left(A,^{-}\right) \otimes\left(B,{ }^{\sim}\right)
$$

It is immediate that this gives a product

$$
\operatorname{Sim}\left(A,^{-}\right) \times \operatorname{Sim}\left(B,^{\sim}\right) \rightarrow \operatorname{Sim}\left(\left(A,^{-}\right) \otimes\left(B,^{\sim}\right)\right)
$$

The product of forms

Let $\left(A,^{-}\right)$and $\left(B,^{\sim}\right)$ be central simple algebras over K with K-involutions, and let $f: V \times V \rightarrow\left(A,{ }^{-}\right)$and
$g: W \times W \rightarrow\left(B,{ }^{\sim}\right)$ be nonsingular Hermitian forms. Then

$$
(f \otimes g)\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right)=f\left(v, v^{\prime}\right) \otimes g\left(w, w^{\prime}\right)
$$

defines a nonsingular Hermitian form

$$
f \otimes g:(V \otimes W) \times(V \otimes W) \rightarrow\left(A,^{-}\right) \otimes\left(B,{ }^{\sim}\right)
$$

It is immediate that this gives a product

$$
\operatorname{Sim}\left(A,^{-}\right) \times \operatorname{Sim}\left(B,^{\sim}\right) \rightarrow \operatorname{Sim}\left(\left(A,^{-}\right) \otimes\left(B,^{\sim}\right)\right)
$$

which induces a product

$$
(\operatorname{Sim} a) \times(\operatorname{Sim} b) \rightarrow \operatorname{Sim} a b \quad(a, b \in \operatorname{Br}(K, i d))
$$

by identification using the canonical bijections.

This can be restated by defining

$$
\mathcal{M}=\mathcal{M}(K, \mathrm{id})=\bigcup_{\mathrm{a} \in \operatorname{Br}(K, \mathrm{id})} \operatorname{Sim} \mathrm{a}
$$

Then \mathcal{M} is an associative monoid graded on $\operatorname{Br}(K, i d)$,

This can be restated by defining

$$
\mathcal{M}=\mathcal{M}(K, \mathrm{id})=\bigcup_{\mathrm{a} \in \operatorname{Br}(K, \mathrm{id})} \operatorname{Sim} \mathrm{a}
$$

Then \mathcal{M} is an associative monoid graded on $\operatorname{Br}(K, i d)$, with identity element the similarity class of the quadratic form x^{2} in the involutory Brauer class of $(K, 1)$.

The product has a nonsurprising interpretation in terms of invariant symmetric bilinear forms over K.

The product has a nonsurprising interpretation in terms of invariant symmetric bilinear forms over K. Suppose that f and g are nonsingular Hermitian forms over $\left(A,{ }^{-}\right)$and $\left(B,{ }^{\sim}\right)$ respectively, and define

$$
\breve{f}(u, v)=\operatorname{trd}_{A / K} f(u, v)
$$

and \breve{g} similarly. They are nonsingular symmetric bilinear forms over K.

The product has a nonsurprising interpretation in terms of invariant symmetric bilinear forms over K. Suppose that f and g are nonsingular Hermitian forms over $\left(A,{ }^{-}\right)$and $\left(B,{ }^{\sim}\right)$ respectively, and define

$$
\breve{f}(u, v)=\operatorname{trd}_{A / K} f(u, v)
$$

and \breve{g} similarly. They are nonsingular symmetric bilinear forms over K. Moreover if $a \in A$,

$$
\begin{aligned}
\breve{f}(a u, v) & =\operatorname{trd}_{A / K} f(a u, v)=\operatorname{trd}_{A / K}(a f(u, v)) \\
& =\operatorname{trd}_{A / K}(f(u, v) a)=\operatorname{trd}_{A / K} f(u, \bar{a} v) \\
& =\breve{f}(u, \bar{a} v),
\end{aligned}
$$

that is to say " f is $\left(A,{ }^{-}\right)$-invariant."

The product has a nonsurprising interpretation in terms of invariant symmetric bilinear forms over K. Suppose that f and g are nonsingular Hermitian forms over $\left(A,{ }^{-}\right)$and $\left(B,{ }^{\sim}\right)$ respectively, and define

$$
\breve{f}(u, v)=\operatorname{trd}_{A / K} f(u, v)
$$

and \breve{g} similarly. They are nonsingular symmetric bilinear forms over K. Moreover if $a \in A$,

$$
\begin{aligned}
\breve{f}(a u, v) & =\operatorname{trd}_{A / K} f(a u, v)=\operatorname{trd}_{A / K}(a f(u, v)) \\
& =\operatorname{trd}_{A / K}(f(u, v) a)=\operatorname{trd}_{A / K} f(u, \bar{a} v) \\
& =\breve{f}(u, \bar{a} v),
\end{aligned}
$$

that is to say " f is $\left(A,{ }^{-}\right)$-invariant."
Thus if $\left(A,{ }^{-}\right)$is a summand of $\left(K G,{ }^{-}\right), \breve{f}$ is G-invariant and so gives rise to an orthogonal representation.

If $\left(B,{ }^{\sim}\right)$ is also a summand of $\left(K G,^{-}\right)$, then

$$
\begin{aligned}
(f \check{\otimes} g)\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right) & =\operatorname{trd}_{A \otimes B / K}\left(f\left(v, v^{\prime}\right) \otimes g\left(w, w^{\prime}\right)\right) \\
& =\left(\operatorname{trd}_{A / K} f\left(v, v^{\prime}\right)\right)\left(\operatorname{trd}_{B / K} g\left(w, w^{\prime}\right)\right)
\end{aligned}
$$

If $\left(B,{ }^{\sim}\right)$ is also a summand of $\left(K G,^{-}\right)$, then

$$
\begin{aligned}
(f \stackrel{\otimes}{g})\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right) & =\operatorname{trd}_{A \otimes B / K}\left(f\left(v, v^{\prime}\right) \otimes g\left(w, w^{\prime}\right)\right) \\
& =\left(\operatorname{trd}_{A / K} f\left(v, v^{\prime}\right)\right)\left(\operatorname{trd}_{B / K} g\left(w, w^{\prime}\right)\right) \\
& =\breve{f}\left(v, v^{\prime}\right) \breve{g}\left(w, w^{\prime}\right)
\end{aligned}
$$

If $\left(B,{ }^{\sim}\right)$ is also a summand of $\left(K G,{ }^{-}\right)$, then

$$
\begin{aligned}
(f \check{\otimes} g)\left(v \otimes w, v^{\prime} \otimes w^{\prime}\right) & =\operatorname{trd}_{A \otimes B / K}\left(f\left(v, v^{\prime}\right) \otimes g\left(w, w^{\prime}\right)\right) \\
& =\left(\operatorname{trd}_{A / K} f\left(v, v^{\prime}\right)\right)\left(\operatorname{trd}_{B / K} g\left(w, w^{\prime}\right)\right) \\
& =\breve{f}\left(v, v^{\prime}\right) \breve{g}\left(w, w^{\prime}\right)
\end{aligned}
$$

Thus if $\left(A,^{-}\right)$and $\left(B,^{\sim}\right)$ are summands of $\left(K G,{ }^{-}\right)$, and f and g correspond to the orthogonal representations

$$
\rho: G \rightarrow \mathrm{O}(V, \breve{f}) \text { and } \sigma: G \rightarrow \mathrm{O}(W, \breve{g})
$$

respectively, then $f \otimes g$ corresponds to the orthogonal representation

$$
\rho \otimes \sigma: G \rightarrow \mathrm{O}(V \otimes W, \breve{f} \breve{g}) .
$$

Remark

Let $f: V \times V \rightarrow\left(D,{ }^{*}\right)$ and $g: W \times W \rightarrow\left(E,^{\dagger}\right)$ be sesquilinear forms over central simple division algebras over K. Then the product of f and g gives a product

$$
\operatorname{Sim}\left(D,{ }^{*}\right) \times \operatorname{Sim}\left(E,^{\dagger}\right) \rightarrow \operatorname{Sim}\left(F,{ }^{\ddagger}\right)
$$

where $\left[D\right.$, type $\left.{ }^{*}\right]\left[E\right.$, type $\left.{ }^{\dagger}\right]=\left[F\right.$, type $\left.{ }^{\ddagger}\right]$ in $\operatorname{Br}(K$, id $)$.

Remark

Let $f: V \times V \rightarrow\left(D,{ }^{*}\right)$ and $g: W \times W \rightarrow\left(E,^{\dagger}\right)$ be sesquilinear forms over central simple division algebras over K. Then the product of f and g gives a product

$$
\operatorname{Sim}\left(D,{ }^{*}\right) \times \operatorname{Sim}\left(E,^{\dagger}\right) \rightarrow \operatorname{Sim}\left(F,{ }^{\ddagger}\right)
$$

where $\left[D\right.$, type $\left.{ }^{*}\right]\left[E\right.$, type $\left.{ }^{\dagger}\right]=\left[F\right.$, type $\left.{ }^{\ddagger}\right]$ in $\operatorname{Br}(K$, id $)$.
That is to say, one can define the product of Hermitian forms over central division K-algebras "up to a scalar".

