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» K is a field

» of characteristic 0 or

» prelatively prime to |G|

so the group algebra KG is a separable algebra.
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Let V be a finite dimensional vector space over K, and
b:V x V — K anonsingular symmetric bilinear form. An
orthogonal representation is a homomorphism

p:G—O(V,b) (1)

into the orthogonal group of b.

Two orthogonal representations
p:G—O(V,b) and o : G— O(W,c)

are equivalent if there is an isometry ¢ : (V, b) — (W, ¢) which
commutes with the action of G.

Notation: = stands for equivalence, of forms or representations.
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If o € K, then
O(V, agh) = O(V, b)

and so p is also an orthogonal representation
p:G— O(V,a0b),
but is not equivalent to
p:G—0O(V,b)
if (V, agb) is not equivalentto (V, b).
Definition. The orthogonal representations
p:G—0O(V,b) and o:G— O(W,c)

are said to be similar if there is a similarity ¢ : (V,b) — (W, c)
which commutes with the action of G. This means that there is
some ag € K such that

c(pv,pV') = agb(v,v') forallv,v' e V.
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Notation: ~ stands for similarity of quadratic spaces or of
orthogonal representations.

One immediately notices that a Witt-Grothendieck group cannot
be defined in the obvious way, not even for symmetric bilinear
forms since, e.g., if K = Q, then x? ~ x2 and y? ~ 2y, but

X%+ y? ot x% 4 22

But similarity is better suited to a multiplication of forms, in a
sense to be defined.
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Three category isomorphisms

The category of linear representations over K is isomorphic to
the category of finitely generated KG-modules.

The group algebra KG has a canonical K-involution:

Z agS = Z ozss_1.
s s

Let p: G — O(V, b) be an orthogonal representation. Define

vv)_Zpr V')s € KG.

Then A
b:VxV—(KG,")

is a nonsingular Hermitian form.
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Theorem: The category of orthogonal representations is
isomorphic to the category of nonsingular Hermitian forms over
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Theorem: The category of orthogonal representations under
similarity is isomorphic to the category of nonsingular Hermitian
forms over (KG, ™) under similarity via p ~~ b.

Proof: One checks easily that ¢ : V — W is a KG-linear
similarity between (V, 9) and (W,c)ifandonly if pis a
similarity between (V, b) and (W, ¢). O
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Reduction to simple algebras.

The K-algebra KG is separable and so factors into a direct sum
KG=Ai1 oA o - DA

of simple (and separable) algebras — the “isotypic components”
of KG.

Thus
(KG,")=(B1,7)@ (B2, ") @ @ (Bt")

where each B; is either a simple component A; such that
A A oris a direct sum A; @ A of two of them

If V is a KG-module, there is a corresponding decomposition
V = B1VEBB_2V€B”’B;\V

into “involution isotypic” components of V.



Since A A
b(B;V,B;V) = Bib(V,V)B,,



Since A A
b(B;V,B;V) = Bib(V,V)B,,

b(B:V,BiV)c B; and b(B;V,BV)=0ifi#].



Since A A
b(B;V,B;V) = Bib(V,V)B,,

b(B:V,BiV)c B; and b(B;V,BV)=0ifi#].

Thus
V=BV.LBVl---1BV

with respect to b (or b) and
B‘B,‘VXB,‘V BV x BV — (B, _)

is also a nonsingular Hermitian form.
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Any KG-homomorphism ¢ : V — W takes B;V into B;W for all
i, and so A
(V,b) = (W,¢)

if and only if

(B:V, blgvxsv) =~ (BW, Elgwxsw)

for all i.

The hyperbolic factors (B; = A; © Z\,- for some j) can be ignored
since for them (B, V, E)‘B,'VXB,'V) ~ (B, w, &’B,-WXB;W) if and onIy
if B;V and B;W have the same length.

Thus the similarity problem is reduced to the special case when
V = BV for a simple algebra (B, ™) with involution.
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Similarity classes

If (A, ) is an algebra with involution, denote by Sim(A, ~) the
set of similarity classes of nonsingular Hermitian forms over
(A7)

Theorem
Let (A,~) and (B, ™) be isomorphic central simple K -algebras
with K -involutions. Then there is a canonical bijection

(D(A,'),(B,') : Sim(A, _) — Sim(B, _).
It satisfies
®B),¢,)P).87) = Pa) )

(D(A,’),(A,_) = idSim(A,')
and
1
)47 = Pa)B):



Let ¢ : (A,7) — (B, ") be an isomorphism. Then if (V, h) is an
Hermitian space over (A, 7), first make V into a B-module #V
by defining

b.v=(po""b)v,

and then define “h(u, v) = ¢ o h(u, v). The form
“h:*V x¥V — (B, 7) is a nonsingular Hermitian form, and
h ~ ?hinduces a map

(D(A,'),(B,') : Sim(A, _) — Sim(B, _).



If 4 : (A,7) — (B, 7) is another isomorphism, the automorphism
Yo~ of (B,”)isan inner automorphism b — cbc~! for some
¢ € B satisfying cc € K, say cc = 7.
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Y~ of (B, ) is an inner automorphism b — cbc™" for some
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If 4 : (A,7) — (B, 7) is another isomorphism, the automorphism
Y~ of (B, ) is an inner automorphism b — cbc™" for some

c € B* satisfying ¢c € K, say ¢c = ~. It follows that v — c.v is
a B-linear map ¥V —#V and furthermore

Yf(u, v) =~y ¥ (c.u, c.v).

Thus “f ~ #f and s0 ® (4 -) (5 - is independent of the
isomorphism (A, 7) — (B, 7) chosen, and it is bijective since the
structure transfer via ¢~ results in the inverse map

Sim(B, ) — Sim(A, 7).

The other properties are easy to verify. O
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Another canonical bijection

Suppose that A = M(n, D) where D is a division algebra over
K, and that A and D have K-involutions = and * respectively.
The map a — a'* is also a K-involution on A, so by the
Skolem-Noether Theorem

a=c, 'a"c

for some ¢y € A*. It satisfies ¢ = egco Where gg = +1.

A finitely generated A-module V is isomorphic to D™ for
some m (the length of V), so any similarity class in
Sim(M(n, D), ™) contains a form h: D™™ x D"™M — (A, 7).
It can be shown that his of the form

h(u, v) = uhv*cy

where h ¢ D™M —it is the “Gram matrix” of h and also satisfies
h* = goh.



Now suppose that (B, ) = (M(p, D), ~) is another involution
algebra of the first kind and of the same type (symplectic or
orthogonal) as (A7),



Now suppose that (B, ) = (M(p, D), ~) is another involution
algebra of the first kind and of the same type (symplectic or
orthogonal) as (A7), so for some dy € GL(p, D) satisfying
db* = eody,

b= d; " b™db.



Now suppose that (B, ) = (M(p, D), ~) is another involution
algebra of the first kind and of the same type (symplectic or
orthogonal) as (A7), so for some dy € GL(p, D) satisfying
dé* = {:‘odo,

b= d; " b™db.

Then the association
uhv*cy ~» xhyd,
induces a bijection
Sim(A, 7) — Sim(B, 7)

which is independent of the various choices made — ¢y, ap, *
and the form h in its similarity class, and so is canonical.



An aside

The eg-Hermitian form
Xﬂyt*, X,y € D1><n

over (D, * ) is, up to a sign, the form over D which is “Morita
equivalent” to h.



An aside

The eg-Hermitian form
Xﬂyt*, X,y € D1><n

over (D, * ) is, up to a sign, the form over D which is “Morita
equivalent” to h.

Two Hermitian forms over (A, ~) are equivalent, respectively
similar, if and only if their Morita equivalent forms over (D, *)
are equivalent respectively similar.
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The general canonical bijection

Suppose that (A, ™) and (B, ™) are central simple algebras in
the same “involutory Brauer class”, i.e. A and B are in the same
Brauer class, say as the central division algebra D, and that
both are orthogonal or both are symplectic.

Suppose that (A,7) = (M(n, D), ") and (B, ) = (M(p, D), 7).
The canonical bijection

Sim(A, 7)) — Sim(B, 7)
is defined to be the composite of the canonical bijections

Sim(A,”) — Sim(M(n, D), ")
—  Sim(M(p, D), ")
— Sim(B,N)



The general canonical bijection has the expected properties:
» the composition of two of them is also one,
» Sim(A, 7) — Sim(A, 7) is the identity, and
» Sim(B, ”) — Sim(A, 7) is the inverse of
Sim(A, 7) — Sim(B, 7).
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g: W x W — (B, ") be nonsingular Hermitian forms.
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The product of forms
Let (A, 7) and (B, ™) be central simple algebras over K with
K-involutions, and let f: V x V — (A, 7) and
g: W x W — (B, ”) be nonsingular Hermitian forms.Then

(feg)(vew v ew)=If(v,V)og(ww)
defines a nonsingular Hermitian form
fog:(VeW)x (Ve W) —(A)e(B").

It is immediate that this gives a product

Sim(A, 7) x Sim(B, *) — Sim((A,”) ® (B, "))

which induces a product

(Sima) x (Simb) — Simab (a,b € Br(K,id))
by identification using the canonical bijections.



This can be restated by defining

M=M(K,id)= [J Sima
aeBr(K,id)

Then M is an associative monoid graded on Br(K,id),



This can be restated by defining

M=M(K,id)= [J Sima
aeBr(K,id)

Then M is an associative monoid graded on Br(K, id),with
identity element the similarity class of the quadratic form x2 in
the involutory Brauer class of (K, 1).
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The product has a nonsurprising interpretation in terms of
invariant symmetric bilinear forms over K.

Suppose that f and g are nonsingular Hermitian forms over
(A, 7) and (B, 7) respectively, and define

9}

f(u,v) = trdg/kf(u,v)

and g similarly. They are nonsingular symmetric bilinear forms
over K. Moreover if a € A,

v

f(au, v) = trdg/kf(au, v) = trdy k(af(u, v))
= trdA/K(f(U, v)a) = '[I‘dA/Kf(U, éV)
= f(u,av),

that is to say “f is (A, ~)-invariant.”

Thus if (A, 7) is @ summand of (KG, 7), f is G-invariant and so
gives rise to an orthogonal representation.



If (B, ) is also a summand of (KG, 7), then

(fog)vew, vV ew) = tdagsk(f(v,V)e g(w,w))
= (trdg/kf(v,V'))(trdg/kg(w, w'))
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If (B, ) is also a summand of (KG, 7), then

(fog)vew, vV ew) = tdagsk(f(v,V)e g(w,w))
= (trdg/kf(v,V'))(trdg/kg(w, w'))
= Fv,V)§(w,w)

Thus if (A, ) and (B, ~) are summands of (KG, 7), and f and g
correspond to the orthogonal representations
p:G—O(V,f) and o:G— O(W,J)

respectively, then f ® g corresponds to the orthogonal
representation

p@o:G— OV W,ITg).



Remark

Letf:VxV — (D, *)andg: Wx W — (E, V) be
sesquilinear forms over central simple division algebras over K.
Then the product of f and g gives a product
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where [D, type * |[E, type T | = [F,type * ] in Br(K id).



Remark

Letf:VxV — (D, *)andg: Wx W — (E, V) be
sesquilinear forms over central simple division algebras over K.
Then the product of f and g gives a product

Sim(D, * ) x Sim(E, T) — Sim(F, *)

where [D, type * |[E, type T | = [F,type * ] in Br(K id).

That is to say, one can define the product of Hermitian forms
over central division K-algebras “up to a scalar”.



