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I G is a finite group, of order |G|

I K is a field
I of characteristic 0 or
I p relatively prime to |G|

so the group algebra KG is a separable algebra.
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Let V be a finite dimensional vector space over K , and
b : V × V → K a nonsingular symmetric bilinear form. An
orthogonal representation is a homomorphism

ρ : G → O(V ,b) (1)

into the orthogonal group of b.

Two orthogonal representations

ρ : G → O(V ,b) and σ : G → O(W , c)

are equivalent if there is an isometry ϕ : (V ,b) → (W , c) which
commutes with the action of G.

Notation: ∼= stands for equivalence, of forms or representations.
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If α0 ∈ K̇ , then
O(V , α0b) = O(V ,b)

and so ρ is also an orthogonal representation

ρ : G → O(V , α0b),

but is not equivalent to

ρ : G → O(V ,b)

if (V , α0b) is not equivalent to (V ,b).

Definition. The orthogonal representations

ρ : G → O(V ,b) and σ : G → O(W , c)

are said to be similar if there is a similarity ϕ : (V ,b) → (W , c)
which commutes with the action of G. This means that there is
some α0 ∈ K̇ such that

c(ϕv , ϕv ′) = α0b(v , v ′) for all v , v ′ ∈ V .
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Notation: ' stands for similarity of quadratic spaces or of
orthogonal representations.

One immediately notices that a Witt-Grothendieck group cannot
be defined in the obvious way, not even for symmetric bilinear
forms since, e.g., if K = Q, then x2 ' x2 and y2 ' 2y2, but
x2 + y2 6' x2 + 2y2.

But similarity is better suited to a multiplication of forms, in a
sense to be defined.



Notation: ' stands for similarity of quadratic spaces or of
orthogonal representations.

One immediately notices that a Witt-Grothendieck group cannot
be defined in the obvious way, not even for symmetric bilinear
forms since, e.g., if K = Q, then x2 ' x2 and y2 ' 2y2, but
x2 + y2 6' x2 + 2y2.

But similarity is better suited to a multiplication of forms, in a
sense to be defined.



Notation: ' stands for similarity of quadratic spaces or of
orthogonal representations.

One immediately notices that a Witt-Grothendieck group cannot
be defined in the obvious way, not even for symmetric bilinear
forms since, e.g., if K = Q, then x2 ' x2 and y2 ' 2y2, but
x2 + y2 6' x2 + 2y2.

But similarity is better suited to a multiplication of forms, in a
sense to be defined.



Three category isomorphisms

The category of linear representations over K is isomorphic to
the category of finitely generated KG-modules.

The group algebra KG has a canonical K -involution:∑
s

αss =
∑

s

αss−1.

Let ρ : G → O(V ,b) be an orthogonal representation. Define

b̂(v , v ′) =
∑

s

b(v , ρ(s)v ′)s ∈ KG.

Then
b̂ : V × V → (KG, ¯)

is a nonsingular Hermitian form.
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Theorem: The category of orthogonal representations is
isomorphic to the category of nonsingular Hermitian forms over
(KG, ¯) via ρ b̂.

Theorem: The category of orthogonal representations under
similarity is isomorphic to the category of nonsingular Hermitian
forms over (KG, ¯) under similarity via ρ b̂.

Proof: One checks easily that ϕ : V → W is a KG-linear
similarity between (V ,b) and (W , c) if and only if ϕ is a
similarity between (V , b̂) and (W , ĉ). �
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Reduction to simple algebras.

The K -algebra KG is separable and so factors into a direct sum

KG = A1 ⊕ A2 ⊕ · · · ⊕ Ar

of simple (and separable) algebras – the “isotypic components”
of KG.

Thus
(KG, ¯) = (B1, ¯)⊕ (B2, ¯)⊕ · · · ⊕ (Bt ¯)

where each Bi is either a simple component Aj such that
Āj = Aj or is a direct sum Aj ⊕ Āj of two of them.

If V is a KG-module, there is a corresponding decomposition

V = B1V ⊕ B2V ⊕ · · ·BtV

into “involution isotypic” components of V .
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Since
b̂(BiV ,BjV ) = Bi b̂(V ,V )Bj ,

b̂(BiV ,BiV ) ⊂ Bi and b̂(BiV ,BjV ) = 0 if i 6= j .

Thus
V = B1V ⊥ B2V ⊥ · · · ⊥ BtV

with respect to b̂ (or b) and

b̂|Bi V×Bi V : BiV × BiV → (Bi , ¯)

is also a nonsingular Hermitian form.
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Any KG-homomorphism ϕ : V → W takes BiV into BiW for all
i ,

and so
(V , b̂) ' (W , ĉ)

if and only if

(BiV , b̂|Bi V×Bi V ) ' (BiW , ĉ|Bi W×Bi W )

for all i .
The hyperbolic factors (Bi = Aj ⊕ Āj for some j) can be ignored
since for them (BiV , b̂|Bi V×Bi V ) ' (BiW , ĉ|Bi W×Bi W ) if and only
if BiV and BiW have the same length.
Thus the similarity problem is reduced to the special case when
V = BV for a simple algebra (B, ¯) with involution.
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Similarity classes
If (A, ¯) is an algebra with involution, denote by Sim(A, ¯) the
set of similarity classes of nonsingular Hermitian forms over
(A, ¯).

Theorem
Let (A, ¯) and (B, ¯) be isomorphic central simple K -algebras
with K -involutions. Then there is a canonical bijection

Φ(A,¯),(B,¯) : Sim(A, ¯) → Sim(B, ¯).

It satisfies

Φ(B,¯),(C,¯)Φ(A,¯),(B,¯) = Φ(A,¯),(C,¯),

Φ(A,¯),(A,¯) = idSim(A,¯)

and
Φ(B,¯),(A,¯) = Φ−1

(A,¯),(B,¯).
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Let ϕ : (A, ¯) → (B, ¯) be an isomorphism. Then if (V ,h) is an
Hermitian space over (A, ¯), first make V into a B-module ϕV
by defining

b.v = (ϕ−1b)v ,

and then define ϕh(u, v) = ϕ ◦ h(u, v). The form
ϕh :ϕV ×ϕV → (B, ¯) is a nonsingular Hermitian form, and
h ϕh induces a map
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If ψ : (A, ¯) → (B, ¯) is another isomorphism, the automorphism
ψϕ−1 of (B, ¯) is an inner automorphism b → cbc−1 for some
c ∈ B× satisfying c̄c ∈ K̇ , say c̄c = γ.

It follows that v → c.v is
a B-linear map ψV →ϕV and furthermore

ψf (u, v) = γ−1ϕf (c.u, c.v).

Thus ψf ' ϕf and so Φ(A,¯),(B,¯) is independent of the
isomorphism (A, ¯) → (B, ¯) chosen, and it is bijective since the
structure transfer via ϕ−1 results in the inverse map

Sim(B, ¯) → Sim(A, ¯).

The other properties are easy to verify. �
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Another canonical bijection
Suppose that A = M(n,D) where D is a division algebra over
K , and that A and D have K -involutions ¯ and ∗ respectively.

The map a → at∗ is also a K -involution on A, so by the
Skolem-Noether Theorem

ā = c−1
0 at∗c0

for some c0 ∈ A×. It satisfies ct∗
0 = ε0c0 where ε0 = ±1.

A finitely generated A-module V is isomorphic to Dn×m for
some m (the length of V ), so any similarity class in
Sim(M(n,D), ¯) contains a form h : Dn×m × Dn×m → (A, ¯).
It can be shown that h is of the form

h(u, v) = uhv t∗c0

where h ∈ Dm×m – it is the “Gram matrix” of h and also satisfies
ht∗ = ε0h.
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Now suppose that (B, ˜) = (M(p,D), ˜) is another involution
algebra of the first kind and of the same type (symplectic or
orthogonal) as (A¯),

so for some d0 ∈ GL(p,D) satisfying
d t∗

0 = ε0d0,
b̃ = d−1

0 bt∗d0.

Then the association

uhv t∗c0  xhy t∗d0

induces a bijection

Sim(A, ¯) → Sim(B, ˜)

which is independent of the various choices made – c0,d0, ∗
and the form h in its similarity class, and so is canonical.
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An aside

The ε0-Hermitian form

xhy t∗, x , y ∈ D1×n

over (D, ∗ ) is, up to a sign, the form over D which is “Morita
equivalent” to h.

Two Hermitian forms over (A, ¯) are equivalent, respectively
similar, if and only if their Morita equivalent forms over (D, ∗ )
are equivalent respectively similar.
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The general canonical bijection

Suppose that (A, ¯) and (B, ˜) are central simple algebras in
the same “involutory Brauer class”, i.e. A and B are in the same
Brauer class, say as the central division algebra D, and that
both are orthogonal or both are symplectic.

Suppose that (A, ¯) ∼= (M(n,D), ¯) and (B, ˜) ∼= (M(p,D), ˜).
The canonical bijection

Sim(A, ¯) → Sim(B, ˜)

is defined to be the composite of the canonical bijections

Sim(A, ¯) → Sim
(
M(n,D), ¯

)
→ Sim

(
M(p,D), ˜

)
→ Sim(B, ˜)
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The general canonical bijection has the expected properties:
I the composition of two of them is also one,
I Sim(A, ¯) → Sim(A, ¯) is the identity, and
I Sim(B, ˜) → Sim(A, ¯) is the inverse of

Sim(A, ¯) → Sim(B, ˜).



The product of forms
Let (A, ¯) and (B, ˜) be central simple algebras over K with
K -involutions, and let f : V × V → (A, ¯) and
g : W ×W → (B, ˜) be nonsingular Hermitian forms.

Then

(f ⊗ g)(v ⊗ w , v ′ ⊗ w ′) = f (v , v ′)⊗ g(w ,w ′)

defines a nonsingular Hermitian form

f ⊗ g : (V ⊗W )× (V ⊗W ) → (A, ¯)⊗ (B, ˜).

It is immediate that this gives a product

Sim(A, ¯)× Sim(B, ˜) → Sim
(
(A, ¯)⊗ (B, ˜)

)
which induces a product

(Sim a)× (Sim b) → Sim ab (a,b ∈ Br(K , id))

by identification using the canonical bijections.
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This can be restated by defining

M = M(K , id) =
⋃

a∈Br(K ,id)

Sim a

Then M is an associative monoid graded on Br(K , id),

with
identity element the similarity class of the quadratic form x2 in
the involutory Brauer class of (K ,1).
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The product has a nonsurprising interpretation in terms of
invariant symmetric bilinear forms over K .

Suppose that f and g are nonsingular Hermitian forms over
(A, ¯) and (B, ˜) respectively, and define

f̆ (u, v) = trdA/K f (u, v)

and ğ similarly. They are nonsingular symmetric bilinear forms
over K . Moreover if a ∈ A,

f̆ (au, v) = trdA/K f (au, v) = trdA/K (af (u, v))

= trdA/K (f (u, v)a) = trdA/K f (u, āv)

= f̆ (u, āv),

that is to say “f̆ is (A, ¯)-invariant.”
Thus if (A, ¯) is a summand of (KG, ¯), f̆ is G-invariant and so
gives rise to an orthogonal representation.
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If (B, ˜) is also a summand of (KG, ¯), then

( ˘f ⊗ g)(v ⊗ w , v ′ ⊗ w ′) = trdA⊗B/K (f (v , v ′)⊗ g(w ,w ′))

= (trdA/K f (v , v ′))(trdB/K g(w ,w ′))

= f̆ (v , v ′)ğ(w ,w ′)

Thus if (A, ¯) and (B, ˜) are summands of (KG, ¯), and f and g
correspond to the orthogonal representations

ρ : G → O(V , f̆ ) and σ : G → O(W , ğ)

respectively, then f ⊗ g corresponds to the orthogonal
representation

ρ⊗ σ : G → O(V ⊗W , f̆ ğ).
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Remark

Let f : V × V → (D, ∗ ) and g : W ×W → (E , † ) be
sesquilinear forms over central simple division algebras over K .
Then the product of f and g gives a product

Sim(D, ∗ )× Sim(E , † ) → Sim(F , ‡ )

where [D, type ∗ ][E , type † ] = [F , type ‡ ] in Br(K , id).

That is to say, one can define the product of Hermitian forms
over central division K -algebras “up to a scalar”.
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