

Quadratic Forms

and their Applications
University College Dublin, July 5-9, 1999

Organized by Eva Bayer-Fluckiger, David Lewis and Andrew Ranicki.

Exact braids

- An exact braid is a commutative diagram of 4 exact sequences

- The 4 exact sequences are

$$
\begin{aligned}
& \cdots \longrightarrow A_{n} \longrightarrow E_{n} \longrightarrow I_{n} \longrightarrow J_{n} \longrightarrow G_{n} \longrightarrow \cdots \\
& \cdots \longrightarrow D_{n} \longrightarrow A_{n} \longrightarrow B_{n} \longrightarrow F_{n} \longrightarrow J_{n} \longrightarrow \cdots \\
& \cdots \longrightarrow D_{n} \longrightarrow H_{n} \longrightarrow I_{n} \longrightarrow F_{n} \longrightarrow C_{n} \longrightarrow \cdots \\
& \cdots \longrightarrow H_{n} \longrightarrow E_{n} \longrightarrow B_{n} \longrightarrow C_{n} \longrightarrow G_{n} \longrightarrow \cdots
\end{aligned}
$$

Brief history of exact braids

- Eilenberg and Steenrod (1952) Axiomatic treatment of Mayer-Vietoris exact sequences, with commutative diagrams.
- Kervaire-Milnor (1963), Levine (1965/1984). Application of braids to the classification of exotic spheres.
- Wall (1966) On the exactness of interlocking sequences. General theory: exactness of three sequences implies exactness of fourth. Applications in homology theory, simplifying the Eilenberg-Steenrod treatment of triples and the Mayer-Vietoris sequence.
- 1966 - . . . Many applications in the surgery theory of high-dimensional manifolds (Wall, R., Hambleton-Taylor-Williams, Harsiladze ...)
- Hardie and Kamps (1985) Homotopy theory application.
- Iversen (1986) Triangulated category application.
- 1983 - . . . Many applications in quadratic form theory of equivariant forms and Clifford algebras, via the exact octagons of Lewis et al.

The first exact braid

- In a letter from Milnor to Kervaire, 29 June, 1961:

with $\Theta_{n}=\pi_{n}(P L / O)$ the group of n-dimensional exotic spheres, $F \Theta_{n}=\pi_{n}(P L)$ the group of framed n-dimensional exotic spheres, $P_{n}=L_{n}(\mathbb{Z})=\pi_{n}(G / P L)$ the simply-connected surgery obstruction group, $\pi_{n}=\Omega_{n}^{f r}=\pi_{n}(G)$ the stable homotopy groups of spheres $=$ the framed cobordism group, $A_{n}=\pi_{n}(G / O)$ the almost framed cobordism group, and $\pi_{n}(S O) \rightarrow \pi_{n}$ the J-homomorphism.
- Exact braids are sometimes called Kervaire diagrams.

Homotopy and homology groups

- The homotopy groups of a space X are the groups of homotopy classes of maps $S^{n} \rightarrow X$

$$
\pi_{n}(X)=\left[S^{n}, X\right] \quad(n \geqslant 1)
$$

- The relative homotopy groups $\pi_{n}(X, Y)$ of a map of spaces $Y \rightarrow X$ are the homotopy classes of commutative squares

with an exact sequence

$$
\cdots \rightarrow \pi_{n}(Y) \rightarrow \pi_{n}(X) \rightarrow \pi_{n}(X, Y) \rightarrow \pi_{n-1}(Y) \rightarrow \ldots
$$

- Similarly for homology $H_{*}(X), H_{*}(X, Y)$.

Fibre squares

- A commutative square of spaces and maps

is a fibre square if the natural maps of relative homotopy groups

$$
\pi_{*}\left(X^{+}, Y\right) \rightarrow \pi_{*}\left(X, X^{-}\right)
$$

are isomorphisms, or equivalently if the natural maps

$$
\pi_{*}\left(X^{-}, Y\right) \rightarrow \pi_{*}\left(X, X^{+}\right)
$$

are isomorphisms.

The exact braid of homotopy groups of a fibre square

- Proposition The homotopy groups of a fibre square

fit into an exact braid

The Mayer-Vietoris sequence of an exact braid

- Proposition An exact braid

determines an exact sequence

$$
\cdots \longrightarrow B_{n+1} \longrightarrow A_{n} \longrightarrow B_{n}^{+} \oplus B_{n}^{-} \longrightarrow B_{n} \longrightarrow A_{n-1} \longrightarrow \cdots
$$

- Exactness proved by diagram chasing.

The Mayer-Vietoris exact sequence of a union

- Let X be a topological space with a decomposition

$$
X=X^{+} \cup_{Y} X^{-}
$$

with $X^{+}, X^{-}, Y \subseteq X$ closed subspaces, $Y=X^{+} \cap X^{-}$.

- Proposition The excision isomorphisms

$$
H_{*}\left(X^{+}, Y\right) \cong H_{*}\left(X, X^{-}\right), H_{*}\left(X^{-}, Y\right) \cong H_{*}\left(X, X^{+}\right)
$$

determine an exact braid of homology sequences

and hence the Mayer-Vietoris exact sequence

$$
\cdots \rightarrow H_{n+1}(X) \rightarrow H_{n}(Y) \rightarrow H_{n}\left(X^{+}\right) \oplus H_{n}\left(X^{-}\right) \rightarrow H_{n}(X) \rightarrow \cdots
$$

Almost an exact braid

- From Eilenberg and Steenrod, Foundations of algebraic topology (1952)

Definition 15.2. The Mayer-Vietoris sequence of a proper triad ($X ; X_{1}, X_{2}$) with $X=X_{1} \cup X_{2}$ and $A=X_{1} \cap X_{2}$ is the lower sequence

$$
\ldots \stackrel{\Delta}{\stackrel{\Delta}{\leftarrow}} \stackrel{\phi}{\leftarrow} H_{\mathrm{a}}(X) \stackrel{\phi}{\leftarrow}\left(A H_{\mathrm{a}}\left(X_{1}\right)+H_{\mathrm{a}}\left(X_{2}\right) \stackrel{\psi}{\leftarrow} H_{\mathrm{a}}(A) \leftarrow \cdots\right.
$$

The homology isomorphisms

- Proposition The top and bottom rows of an exact braid

are chain complexes with isomorphic homology

$$
\frac{\operatorname{ker}\left(B_{n}^{+} \rightarrow A_{n-1}^{-}\right)}{\operatorname{im}\left(A_{n}^{+} \rightarrow B_{n}^{+}\right)} \cong \frac{\operatorname{ker}\left(B_{n}^{-} \rightarrow A_{n-1}^{+}\right)}{\operatorname{im}\left(A_{n}^{-} \rightarrow B_{n}^{-}\right)}
$$

- The elements $b^{+} \in \operatorname{ker}\left(B_{n}^{+} \rightarrow A_{n-1}^{-}\right), b^{-} \in \operatorname{ker}\left(B_{n}^{-} \rightarrow A_{n-1}^{+}\right)$match up if and only if they have the same image in B_{n}.

4-periodicity

- An exact braid is 4-periodic if

$$
X_{n}=X_{n+4} \text { for } X \in\left\{A, B, A^{+}, B^{+}, A^{-}, B^{-}\right\}
$$

- Proposition For a 4-periodic exact braid with bottom row 0

the top row is an exact sequence

$$
\cdots \longrightarrow A_{2 n}^{+} \longrightarrow B_{2 n}^{+} \longrightarrow A_{2 n-1}^{-} \longrightarrow B_{2 n-1}^{-} \longrightarrow A_{2 n-2}^{-} \longrightarrow \cdots
$$

defining ...

The exact octagon of a 4-periodic exact braid with bottom row 0

The coat of arms of the Isle of Man

The surgery exact braid

- Given an m-dimensional manifold M and $x: S^{n} \times D^{m-n} \subset M$ define the m-dimensional manifold M^{\prime} obtained from M by surgery

$$
M^{\prime}=M_{0} \cup D^{n+1} \times S^{m-n-1} \text { with } M_{0}=\operatorname{cl} .\left(M \backslash S^{n} \times D^{m-n}\right)
$$

- The homology groups of the trace cobordism

$$
\left(W ; M, M^{\prime}\right)=\left(M \times I \cup D^{n+1} \times D^{m-n} ; M, M^{\prime}\right)
$$

fit into an exact braid

with $H_{n+1}(W, M)=\mathbb{Z}, H_{m-n}\left(W, M^{\prime}\right)=\mathbb{Z},=0$ otherwise.

Algebraic L-theory via forms and automorphisms

- Wall (1970) defined the 4-periodic algebraic L-groups

$$
L_{n}(A)=L_{n+4}(A)
$$

of a ring with involution A. Applications to surgery theory of n-dimensional manifolds with $n \geqslant 5$.

- $L_{2 k}(A)$ is the Witt group of nonsingular $(-)^{k}$-quadratic forms on f.g. free A-modules.
- $L_{2 k+1}(A)$ is the commutator quotient of the stable unitary group of automorphisms of the hyperbolic $(-)^{k}$-quadratic forms on f.g. free A-modules.
- If X is an n-dimensional space with Poincaré duality and a normal vector bundle there is an obstruction in $L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ to X being homotopy equivalent to an n-dimensional manifold.
- If $f: M \rightarrow X$ is a normal homotopy equivalence of n-dimensional manifolds there is an obstruction in $L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ to f being homotopic to a diffeomorphism.

Algebraic L-theory via Poincaré chain complexes

- (R., 1980) Expression of $L_{n}(A)$ as the cobordism group of n-dimensional f.g. free A-module chain complexes

$$
C: C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0}
$$

with an n-dimensional quadratic Poincaré duality

$$
H^{n-*}(C) \cong H_{*}(C)
$$

- Quadratic Poincaré complexes C, C^{\prime} are cobordant if there exists an ($n+1$)-dimensional f.g. free A-module chain complex D with chain maps $C \rightarrow D, C^{\prime} \rightarrow D$ and an $(n+1)$-dimensional quadratic Poincaré-Lefschetz duality

$$
H^{n+1-*}(D, C) \cong H_{*}\left(D, C^{\prime}\right)
$$

- The 4-periodicity isomorphisms are defined by double suspension

$$
L_{n}(A) \rightarrow L_{n+4}(A) ; C \mapsto S^{2} C
$$

with $\left(S^{2} C\right)_{r}=C_{r-2}$.

Induction in L-theory

- A morphism of rings with involution $f: A \rightarrow B$ determines an induction functor of additive categories with duality involution
$f_{!}:\{$f.g. free A-modules $\} \rightarrow\{$ f.g. free B-modules $\} ; M \mapsto B \otimes_{A} M$
- (R., 1980) The relative L-group $L_{n}\left(f_{!}\right)$in the exact sequence

$$
\cdots \longrightarrow L_{n}(A) \xrightarrow{f_{!}} L_{n}(B) \longrightarrow L_{n}\left(f_{!}\right) \longrightarrow L_{n-1}(A) \longrightarrow \cdots
$$

is the cobordism group of pairs (D, C) with C an $(n-1)$-dimensional quadratic Poincaré complex over A and D a null-cobordism of $f_{!} C$ over B

$$
L_{n}\left(f_{!}\right) \rightarrow L_{n-1}(A) ; \quad(D, C) \mapsto C
$$

Restriction in L-theory

- A morphism of rings with involution $f: A \rightarrow B$ with B f.g. free as an A-module determines the restriction functor
$f^{!}:\{$f.g. free B-modules $\} \rightarrow\{$ f.g. free A-modules $\} ; N \mapsto N$
- (R., 1980) The relative L-group $L_{n}\left(f^{!}\right)$in the exact sequence

$$
\cdots \longrightarrow L_{n}(B) \xrightarrow{f^{!}} L_{n}(A) \longrightarrow L_{n}\left(f^{!}\right) \longrightarrow L_{n-1}(B) \longrightarrow \cdots
$$

is the cobordism group of pairs (D, C) with C an ($n-1$)-dimensional quadratic Poincaré complex over B and D a null-cobordism of $f^{!} C$ over A

$$
L_{n}\left(f^{!}\right) \rightarrow L_{n-1}(B) ;(D, C) \mapsto C
$$

Quadratic extensions of a ring with involution

- Given a ring A and a non-square central unit $a \in A^{\bullet}$ let

$$
A[\sqrt{a}]=A[t] /\left(t^{2}-a\right)
$$

be the quadratic extension of A adjoining the square roots of a.

- Given an involution $A \rightarrow A ; x \mapsto \bar{x}$ with $\bar{a}=a$ let $A[\sqrt{a}]^{+}, A[\sqrt{a}]^{-}$ denote the ring $A[\sqrt{a}]$ with the involution on A extended by

$$
\begin{aligned}
& A[\sqrt{a}]^{+} \rightarrow A[\sqrt{a}]^{+} ; x+y \sqrt{a} \mapsto x+y \sqrt{a}, \\
& A[\sqrt{a}]^{-} \rightarrow A[\sqrt{a}]^{-} ; x+y \sqrt{a} \mapsto x-y \sqrt{a} .
\end{aligned}
$$

with the inclusions denoted by

$$
i^{+}: A \rightarrow A[\sqrt{a}]^{+}, i^{-}: A \rightarrow A[\sqrt{a}]^{-} .
$$

The Witt groups of a quadratic extension of a field

- Proposition (Jacobson 1940, Milnor and Husemoller 1973)

Let K be a field with the identity involution, of characteristic $\neq 2$, and let $J=K[\sqrt{a}]$ be a quadratic extension for some non-square $a \in K^{\bullet}$. The Witt groups of J^{+}, J^{-}, K are related by an exact sequence

$$
0 \longrightarrow L_{0}\left(J^{-}\right) \xrightarrow{\left(i^{-}\right)^{!}} L_{0}(K) \xrightarrow{i_{!}^{+}} L_{0}\left(J^{+}\right)
$$

with $i^{+}: K \rightarrow J^{+}, i^{-}: K \rightarrow J^{-}$the inclusions

- $\left(i^{-}\right)^{!}$is a special case of the Scharlau transfer for the Witt groups of finite algebraic extensions of fields.
- There is also a version for characteristic 2 .

\mathbb{R} and \mathbb{C}

- Example For $K=\mathbb{R}$ with the identity involution and $a=-1$

$$
\begin{aligned}
& K[\sqrt{a}]^{+}=\mathbb{C} \text { with identity involution }, \\
& K[\sqrt{a}]^{-}=\mathbb{C} \text { with complex conjugation. }
\end{aligned}
$$

- The signatures and mod 2 rank define isomorphisms

$$
\begin{aligned}
& \text { signature } / 2: L_{0}\left(\mathbb{C}^{-}\right) \cong \mathbb{Z} \\
& \text { signature }: L_{0}(\mathbb{R}) \cong \mathbb{Z} \\
& \text { mod } 2 \text { rank }: L_{0}\left(\mathbb{C}^{+}\right) \cong \mathbb{Z}_{2}
\end{aligned}
$$

- The Witt groups are related by the exact sequence

$$
0 \longrightarrow L_{0}\left(\mathbb{C}^{-}\right)=\mathbb{Z} \xrightarrow{2} L_{0}(\mathbb{R})=\mathbb{Z} \longrightarrow L_{0}\left(\mathbb{C}^{+}\right)=\mathbb{Z}_{2} \longrightarrow 0
$$

L-theory excision of quadratic extensions

- Browder and Livesay (1967), Wall (1970), Lopez de Medrano (1971) and Hambleton (1982) worked on the surgery obstruction theory for splitting homotopy equivalences of manifolds along codimension 1 submanifolds with nontrivial normal bundle, such as $\mathbb{R} \mathbb{P}^{n} \subset \mathbb{R} \mathbb{P}^{n+1}$, giving codimension 1 isomorphisms of relative L-groups for group rings.
- Proposition (R. 1987) For any ring with involution A the relative L-groups of induction and restriction of the inclusions

$$
i^{+}: A \rightarrow A[\sqrt{a}]^{+}, i^{-}: A \rightarrow A[\sqrt{a}]^{-}
$$

are related by isomorphisms

$$
\begin{aligned}
& L_{n}\left(i_{!}^{+}\right) \xrightarrow{\cong} L_{n+1}\left(i_{!}^{-}\right) ;(D, C) \mapsto(S D, S C), \\
& L_{n}\left(\left(i^{-}\right)!\right) \stackrel{\cong}{\Longrightarrow} L_{n+1}\left(\left(i^{+}\right)!\right) ;(D, C) \mapsto(S D, S C)
\end{aligned}
$$

with $S C_{r}=C_{r-1}$.

Some results of David Lewis

- (1977) The computation of $L_{2 *}(\mathbb{R}[\pi])$ for a finite group π in terms of the multisignature.
- $(1983 / 5)$ The extensions of the Milnor-Husemoller exact sequence to exact octagons of Witt groups of $J[\pi]^{+}, J[\pi]^{-}, K[\pi]$ for a finite group π, and to Clifford algebras

The L-theory exact braid of a quadratic extension

- Proposition (Hambleton-Taylor-Williams, R. 1984, 1987, 1992)

The isomorphisms

$$
L_{*}\left(i_{!}^{+}\right) \cong L_{*+1}\left(i_{!}^{-}\right), L_{*}\left(\left(i^{-}\right)^{!}\right) \cong L_{*+1}\left(\left(i^{+}\right)^{!}\right)
$$

determine an exact braid of L-groups

The L-theory exact octagon of a quadratic extension

- Proposition (R. 1978) $L_{2 *+1}(A)=0$ for a semisimple A.
- Proposition (Warshauer 1982, Lewis 1983/5, Hambleton, Taylor and Williams 1984, R. 1992, Grenier-Boley and Mahmoudi 2005) If A and $A[\sqrt{a}]$ are semisimple there is defined an exact octagon of Witt groups

$$
L_{0}\left(A[\sqrt{a}]^{-}\right) \xrightarrow{\left(i^{-}\right)^{!}} L_{0}(A)
$$

References I.

- Grenier-Boley, N. and Mahmoudi, M. G. Exact sequences of Witt groups, Comm. Algebra 33, 965-986 (2005)
- Hambleton, I., Projective surgery obstructions on closed manifolds, Lect. Notes in Math. 967, 101-131, Springer (1982)
- Hambleton, I., Taylor, L. and Williams, B., An introduction to maps between surgery obstruction groups, Lect. Notes in Math. 1051, 49-127, Springer (1984)
- Hardie, K. A. and Kamps, K. H., Exact sequence interlocking and free homotopy theory, Cah. Top. Geo. Diff. 26, 3-31 (1985)
- Harsiladze, A. F., Hermitian K-theory and quadratic extensions of rings, Trud. Mosk. Math. Ob. 41, 3-36 (1980)
- Iversen, B., Octahedra and braids, Bull. SMF 114, 197-213 (1986)
- Levine, J., A classification of differentiable knots, Ann. of Maths. 82, 15-50 (1965)
- Levine, J., Lectures on groups of homotopy spheres, Lect. Notes in Math. 1126, 62-95, Springer (1984)

References II.

- Lewis, D. W., Forms over real algebras and the multisignature of a manifold, Adv. in Math. 23, 272-284 (1977)
- Lewis, D. W., Exact sequences of Witt groups of equivariant forms, Enseign. Math. (2) 29, 45-51 (1983)
- Lewis, D. W., Periodicity of Clifford algebras and exact octagons of Witt groups. Math. Proc. Cambridge Philos. Soc. 98, 263-269 (1985)
- Ranicki, A. A., On the algebraic L-theory of semisimple rings, J. Algebra 50, 242-243 (1978)
- Ranicki, A. A., The L-theory of twisted quadratic extensions, Can. J. Math. 39, 345-364 (1987)
- Ranicki, A. A., Algebraic L-theory and topological manifolds (1992)
- Wall, C.T.C., On the exactness of interlocking exact sequences, l'Ens. Math. XII, 95-100 (1966)
- Wall, C.T.C., Surgery on compact manifolds, Academic Press (1970),
- Warshauer, M., The Witt Group of Degree k Maps and Asymmetric Inner Product Spaces, Lect. Notes in Math. 914, Springer (1982)

