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Question
Can we describe the algebras with involution (A, σ)/k that become
hyperbolic over F = k(〈1,−a,−b〉)?

Example

• (A, σ) hyperbolic /k

• (Q, )̄, where Q = (a, b)k

• (A, σ) ⊃ (Q, )̄ that is (A, σ) = (Q, )̄⊗ (B, τ)
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Minimal Forms of dimension 5

Theorem (Hoffmann - Lewis - Van Geel)

Let ϕ be a 5-dimensional form over k

ϕ is F -minimal

⇔
• ϕ ⊂ 〈〈a, b, `〉〉 for some ` ∈ k×

• C0(ϕ) ∼Br (c , d)k with (c, d)k ⊗ (a, b)k is division



Degree 4 symplectic case

Theorem (Q-T)

Let (A, σ) be a degree 4 algebra with symplectic involution.

Assume

{
(A, σ) is non-hyperbolic,
(A, σ)F is hyperbolic.

Then

Either (A, σ) = (Q, )̄⊗ (H, ρ) (1)

Or (A, σ) = (M2(F ), ad〈〈`〉〉)⊗ ((c , d)k , )̄ (2)
with (a, b)k ⊗ (c, d)k division
and 〈〈`, a, b〉〉 ' 〈〈`, c, d〉〉.



Subform Theorem

Theorem (QT)

Assume A = Mn(F ) or Mn(Q), and (A, σ) is anisotropic.

Then (A, σ) is hyperbolic over F
⇔

(A, σ) ⊃ (Q, )̄.



Degree 8 orthogonal case

Let ϕ be the 7-dimensional minimal form constructed by Hoffmann
and Van Geel
And (A, σ) = (C0(ϕ), can).

1) A is division ; hence (A, σ) is anisotropic.

2) (A, σ) is hyperbolic over F .

3) A ⊃ Q;

4) (A, σ) 6⊃ (Q, )̄.
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