Algebras with involution hyperbolic over the function field of a conic

Anne Quéguiner-Mathieu - Joint with Jean-Pierre Tignol

July 2009

Question

Can we describe the algebras with involution $(A, \sigma) / k$ that become hyperbolic over $F=k(\langle 1,-a,-b\rangle)$?

Question

Can we describe the algebras with involution $(A, \sigma) / k$ that become hyperbolic over $F=k(\langle 1,-a,-b\rangle)$?

Example

- (A, σ) hyperbolic $/ k$
- $\left(Q,^{-}\right)$, where $Q=(a, b)_{k}$
- $(A, \sigma) \supset\left(Q,^{-}\right) \quad$ that is $(A, \sigma)=\left(Q,^{-}\right) \otimes(B, \tau)$

Typical example

φ odd-dimensional quadratic form over k such that φ is isotropic over $F=k(\langle 1,-a,-b\rangle)$.

$$
(A, \sigma)=\left(\mathcal{C}_{0}(\varphi), \text { can }\right) \text { is hyperbolic over } F
$$

Typical example

φ odd-dimensional quadratic form over k such that φ is isotropic over $F=k(\langle 1,-a,-b\rangle)$.

$$
(A, \sigma)=\left(\mathcal{C}_{0}(\varphi), \text { can }\right) \text { is hyperbolic over } F
$$

Example

- $\varphi=\langle 1,-a,-b\rangle \quad \rightsquigarrow \quad(A, \sigma)=\left(Q,^{-}\right)$
- $\varphi \supset\langle 1,-a,-b\rangle \quad \rightsquigarrow \quad(A, \sigma) \supset\left(Q,^{-}\right)$

Question

Can we describe the quadratic forms φ / k that become isotropic over $F=k(\langle 1,-a,-b\rangle)$?

Example

- isotropic forms
- $\langle\lambda\rangle\langle 1,-a,-b\rangle$
- $\varphi \supset\langle\lambda\rangle\langle 1,-a,-b\rangle$

Question

Can we describe the quadratic forms φ / k that become isotropic over $F=k(\langle 1,-a,-b\rangle)$?

Example

- isotropic forms
- $\langle\lambda\rangle\langle 1,-a,-b\rangle$
- $\varphi \supset\langle\lambda\rangle\langle 1,-a,-b\rangle$

Question (Lam, 70's)
If φ / k is anisotropic and isotropic over $F=k(\langle 1,-a,-b\rangle)$, does $\varphi \supset\langle\lambda\rangle\langle 1,-a,-b\rangle$

Bibliography

- M. Rost: On quadratic forms isotropic over the function field of a conic. Math Annalen (1990)

Bibliography

- M. Rost: On quadratic forms isotropic over the function field of a conic. Math Annalen (1990)
- D. Lewis and J. Van Geel : Quadratic forms isotropic over the function field of a conic. Indag. Mathem. (1994)
- D. Hoffmann, D. Lewis and J. Van Geel : Minimal forms for functions fields of conics. Proc. Symposia in Pure Math. (1995)
- D. Hoffmann and J. Van Geel : Minimal forms with respect to function fields of conics. Manuscripta Math. (1995)

Minimal Forms of dimension 5

Theorem (Hoffmann - Lewis - Van Geel)
Let φ be a 5-dimensional form over k
φ is F-minimal

- $\varphi \subset\langle\langle a, b, \ell\rangle\rangle$ for some $\ell \in k^{\times}$
- $\mathcal{C}_{0}(\varphi) \sim_{\mathrm{Br}}(c, d)_{k}$ with $(c, d)_{k} \otimes(a, b)_{k}$ is division

Degree 4 symplectic case

Theorem (Q-T)
Let (A, σ) be a degree 4 algebra with symplectic involution.
Assume $\left\{\begin{array}{l}(A, \sigma) \text { is non-hyperbolic, } \\ (A, \sigma)_{F} \text { is hyperbolic. }\end{array}\right.$ Then
Either $(A, \sigma)=\left(Q,{ }^{-}\right) \otimes(H, \rho)$
$\operatorname{Or}(A, \sigma)=\left(M_{2}(F), \operatorname{ad}_{\langle\langle\ell\rangle\rangle}\right) \otimes\left((c, d)_{k},{ }^{-}\right)$
with $(a, b)_{k} \otimes(c, d)_{k}$ division
and $\langle\langle\ell, a, b\rangle\rangle \simeq\langle\langle\ell, c, d\rangle\rangle$.

Subform Theorem

Theorem (QT)
Assume $A=M_{n}(F)$ or $M_{n}(Q)$, and (A, σ) is anisotropic.
Then (A, σ) is hyperbolic over F
$(A, \sigma) \supset\left(Q,^{-}\right)$.

Degree 8 orthogonal case

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel
And $(A, \sigma)=\left(\mathcal{C}_{0}(\varphi)\right.$, can $)$.

1) A is division ; hence (A, σ) is anisotropic.

Degree 8 orthogonal case

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel
And $(A, \sigma)=\left(\mathcal{C}_{0}(\varphi)\right.$, can $)$.

1) A is division ; hence (A, σ) is anisotropic.
2) (A, σ) is hyperbolic over F.

Degree 8 orthogonal case

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel
And $(A, \sigma)=\left(\mathcal{C}_{0}(\varphi)\right.$, can $)$.

1) A is division ; hence (A, σ) is anisotropic.
2) (A, σ) is hyperbolic over F.
3) $A \supset Q$;

Degree 8 orthogonal case

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel
And $(A, \sigma)=\left(\mathcal{C}_{0}(\varphi)\right.$, can $)$.

1) A is division ; hence (A, σ) is anisotropic.
2) (A, σ) is hyperbolic over F.
3) $A \supset Q$;
4) $(A, \sigma) \not \supset\left(Q,{ }^{-}\right)$.
