Algebras with involution hyperbolic over the function field of a conic

Anne Quéguiner-Mathieu - Joint with Jean-Pierre Tignol

July 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can we describe the algebras with involution $(A, \sigma)/k$ that become hyperbolic over F = k((1, -a, -b))?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we describe the algebras with involution $(A, \sigma)/k$ that become hyperbolic over F = k((1, -a, -b))?

Example

- (A, σ) hyperbolic /k
- $(Q,\bar{})$, where $Q = (a,b)_k$
- $(A,\sigma) \supset (Q,\bar{})$ that is $(A,\sigma) = (Q,\bar{}) \otimes (B,\tau)$

Typical example

 φ odd-dimensional quadratic form over ksuch that φ is isotropic over $F = k(\langle 1, -a, -b \rangle)$.

$$(A, \sigma) = (\mathcal{C}_0(\varphi), \operatorname{can})$$
 is hyperbolic over F

Typical example

 φ odd-dimensional quadratic form over ksuch that φ is isotropic over $F = k(\langle 1, -a, -b \rangle)$.

$$(A, \sigma) = (\mathcal{C}_0(\varphi), \operatorname{can})$$
 is hyperbolic over F

Example

•
$$\varphi = \langle 1, -a, -b \rangle \quad \rightsquigarrow \quad (A, \sigma) = (Q, \bar{})$$

• $\varphi \supset \langle 1, -a, -b \rangle \quad \rightsquigarrow \quad (A, \sigma) \supset (Q, \bar{})$

Can we describe the quadratic forms φ/k that become isotropic over $F = k(\langle 1, -a, -b \rangle)$?

Example

- isotropic forms
- $\langle \lambda \rangle \langle 1, -a, -b \rangle$
- $\varphi \supset \langle \lambda \rangle \langle 1, -a, -b \rangle$

Can we describe the quadratic forms φ/k that become isotropic over $F = k(\langle 1, -a, -b \rangle)$?

Example

- isotropic forms
- $\langle \lambda \rangle \langle 1, -a, -b \rangle$
- $\varphi \supset \langle \lambda \rangle \langle 1, -a, -b \rangle$

Question (Lam, 70's)

If φ/k is anisotropic and isotropic over $F = k(\langle 1, -a, -b \rangle)$, does $\varphi \supset \langle \lambda \rangle \langle 1, -a, -b \rangle$

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• M. Rost : On quadratic forms isotropic over the function field of a conic. Math Annalen (1990)

Bibliography

• M. Rost : On quadratic forms isotropic over the function field of a conic. Math Annalen (1990)

- D. Lewis and J. Van Geel : Quadratic forms isotropic over the function field of a conic. Indag. Mathem. (1994)
- D. Hoffmann, D. Lewis and J. Van Geel : Minimal forms for functions fields of conics. Proc. Symposia in Pure Math. (1995)
- D. Hoffmann and J. Van Geel : Minimal forms with respect to function fields of conics. Manuscripta Math. (1995)

Minimal Forms of dimension 5

Theorem (Hoffmann - Lewis - Van Geel)

Let φ be a 5-dimensional form over k

 φ is F-minimal

\Leftrightarrow

- $\varphi \subset \langle \langle a, b, \ell \rangle \rangle$ for some $\ell \in k^{\times}$
- $C_0(\varphi) \sim_{\mathsf{Br}} (c,d)_k$ with $(c,d)_k \otimes (a,b)_k$ is division

Degree 4 symplectic case

Theorem (Q-T) Let (A, σ) be a degree 4 algebra with symplectic involution.

Assume
$$\begin{cases} (A, \sigma) \text{ is non-hyperbolic,} \\ (A, \sigma)_F \text{ is hyperbolic.} \end{cases}$$
 Then

 $Either (A, \sigma) = (Q, \bar{}) \otimes (H, \rho)$ (1)

 $Or (A, \sigma) = (M_2(F), \operatorname{ad}_{\langle \langle \ell \rangle \rangle}) \otimes ((c, d)_k, \bar{}) \quad (2)$ with $(a, b)_k \otimes (c, d)_k$ division and $\langle \langle \ell, a, b \rangle \rangle \simeq \langle \langle \ell, c, d \rangle \rangle.$

Subform Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (QT) Assume $A = M_n(F)$ or $M_n(Q)$, and (A, σ) is anisotropic. Then (A, σ) is hyperbolic over F \Leftrightarrow $(A, \sigma) \supset (Q, \bar{}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel And $(A, \sigma) = (C_0(\varphi), can)$.

1) A is division ; hence (A, σ) is anisotropic.

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel And $(A, \sigma) = (C_0(\varphi), can)$.

1) A is division ; hence (A, σ) is anisotropic.

2) (A, σ) is hyperbolic over *F*.

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel And $(A, \sigma) = (C_0(\varphi), can)$.

- 1) A is division ; hence (A, σ) is anisotropic.
- 2) (A, σ) is hyperbolic over *F*.

3) $A \supset Q$;

Let φ be the 7-dimensional minimal form constructed by Hoffmann and Van Geel And $(A, \sigma) = (C_0(\varphi), can)$.

- 1) A is division ; hence (A, σ) is anisotropic.
- 2) (A, σ) is hyperbolic over *F*.

3) $A \supset Q$;

4) $(A, \sigma) \not\supseteq (Q, \bar{}).$