## Symmetrising operations, symmetric bilinear forms and central simple algebras

Seán McGarraghy<br>University College Dublin<br>LewisFest, July 2009

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ringSchur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work


## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomialsCentral simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work


## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work

Exterior powers of forms and the Witt-Grothendieck ring

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work

Exterior powers of forms and the Witt-Grothendieck ring

## Preliminaries

## Question

Exterior and other symmetrising powers of quadratic forms arise from actions of the symmetric group; can we define something similar for central simple algebras with involution?

## Usual disclaimer: Let $K$ be a field of characteristic $\neq 2$. All vector

 spaces will be finite-dimensional over $K$
## Notation

Let $\widehat{W}(K)^{+}$denote the commutative cancellation semi-ring of isometry classes of symmetric bilinear forms under $\perp$ and $\otimes$, and let $W(K)$ be its Grothendieck completion, the
Witt-Grothendieck ring of $K$. Then $W(K)$ is the quotient of $W(K)$ by the ideal generated by hyperbolic spaces.

Exterior powers of forms and the Witt-Grothendieck ring

## Preliminaries

## Question

Exterior and other symmetrising powers of quadratic forms arise from actions of the symmetric group; can we define something similar for central simple algebras with involution?

Usual disclaimer: Let $K$ be a field of characteristic $\neq 2$. All vector spaces will be finite-dimensional over $K$.

> Notation
> Let $\widehat{W}(K)^{+}$denote the commutative cancellation semi-ring of isometry classes of symmetric bilinear forms under $\perp$ and $\otimes$, and let $W(K)$ be its Grothendieck completion, the Witt-Grothendieck ring of $K$. Then $W(K)$ is the quotient of $\widehat{W}(K)$ by the ideal generated by hyperbolic spaces.

## Preliminaries

## Question

Exterior and other symmetrising powers of quadratic forms arise from actions of the symmetric group; can we define something similar for central simple algebras with involution?

Usual disclaimer: Let $K$ be a field of characteristic $\neq 2$. All vector spaces will be finite-dimensional over $K$.

## Notation

Let $\widehat{W}(K)^{+}$denote the commutative cancellation semi-ring of isometry classes of symmetric bilinear forms under $\perp$ and $\otimes$, and let $\widehat{W}(K)$ be its Grothendieck completion, the Witt-Grothendieck ring of $K$. Then $W(K)$ is the quotient of $\widehat{W}(K)$ by the ideal generated by hyperbolic spaces.

Exterior powers of forms and the Witt-Grothendieck ring

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work


## Exterior powers

If $V$ is a $K$-vector space with $\operatorname{dim} V=n$, then $\operatorname{dim} \wedge^{k} V=\binom{n}{k}$ (taken to be 0 for all $k>n$ ). Also

$$
\Lambda^{k}(V \oplus W)=\bigoplus_{i+j=k} \Lambda^{i} V \otimes \Lambda^{j} W
$$

What about bilinear forms?

## Definition

Let $\omega: V \times V \longrightarrow K$ be a bilinear form and let $k \in \mathbb{Z}, 1 \leq k \leq n$ Define the $k$-fold exterior power $\Lambda^{k} \varphi: \Lambda^{k} V \times \Lambda^{k} V \longrightarrow K$ by


We define $\bigwedge^{0} \varphi:=\langle 1\rangle$, the identity form of dimension 1 For $k>n$ we define $\bigwedge^{k} \varphi$ to be the zero form, since $\Lambda^{k} V=0$

## Exterior powers

If $V$ is a $K$-vector space with $\operatorname{dim} V=n$, then $\operatorname{dim} \bigwedge^{k} V=\binom{n}{k}$ (taken to be 0 for all $k>n$ ). Also

$$
\bigwedge^{k}(V \oplus W)=\bigoplus_{i+j=k} \bigwedge^{i} V \otimes \bigwedge^{j} W
$$

What about bilinear forms?

## Definition

Let $\varphi: V \times V \longrightarrow K$ be a bilinear form and let $k \in \mathbb{Z}, 1 \leq k \leq n$. Define the $k$-fold exterior power $\Lambda^{k} \varphi: \Lambda^{k} V \times \Lambda^{k} V \longrightarrow K$ by

$$
\wedge^{k} \varphi\left(x_{1} \wedge \cdots \wedge x_{k}, y_{1} \wedge \cdots \wedge y_{k}\right)=\operatorname{det}\left(\varphi\left(x_{i}, y_{j}\right)\right)_{1 \leq i, j \leq k}
$$

We define $\bigwedge^{0} \varphi:=\langle 1\rangle$, the identity form of dimension 1. For $k>n$ we define $\bigwedge^{k} \varphi$ to be the zero form, since $\bigwedge^{k} V=0$.

Then $\Lambda^{k} \varphi$ is a bilinear form, and is symmetric if $\varphi$ is symmetric.
We have a similar definition for hermitian forms. We can define exterior powers of a quadratic form via its associated polar.

## The exterior power construction also works for certain rings in which 2 is invertible, e.g., local rings.

Theorem

## $\bigwedge^{k}$ is a (covariant) functor on the category of bilinear forms, and respects symmetry and non-singularity of forms.



Then $\Lambda^{k} \varphi$ is a bilinear form, and is symmetric if $\varphi$ is symmetric.
We have a similar definition for hermitian forms. We can define exterior powers of a quadratic form via its associated polar.

The exterior power construction also works for certain rings in which 2 is invertible, e.g., local rings.

Theorem
$\square$


However, $\varphi$ hyperbolic $\neq \Lambda^{k} \varphi$ hyperbolic, as $\binom{2 m}{k}$ may be odd Thus $\Lambda^{k}$ is not well-defined on $W(K)$

Then $\Lambda^{k} \varphi$ is a bilinear form, and is symmetric if $\varphi$ is symmetric.
We have a similar definition for hermitian forms. We can define exterior powers of a quadratic form via its associated polar.

The exterior power construction also works for certain rings in which 2 is invertible, e.g., local rings.

## Theorem

$\Lambda^{k}$ is a (covariant) functor on the category of bilinear forms, and respects symmetry and non-singularity of forms.

Thus, if $\varphi \simeq \psi$, then $\bigwedge^{k} \varphi \simeq \bigwedge^{k} \psi$; so $\bigwedge^{k}$ is well-defined on $\widehat{W}(K)$. However, $\varphi$ hyperbolic $\nRightarrow \bigwedge^{k} \varphi$ hyperbolic, as $\binom{2 m}{k}$ may be odd Thus $\Lambda^{k}$ is not well-defined on $W(K)$.

Then $\Lambda^{k} \varphi$ is a bilinear form, and is symmetric if $\varphi$ is symmetric.
We have a similar definition for hermitian forms. We can define exterior powers of a quadratic form via its associated polar.

The exterior power construction also works for certain rings in which 2 is invertible, e.g., local rings.

## Theorem

$\bigwedge^{k}$ is a (covariant) functor on the category of bilinear forms, and respects symmetry and non-singularity of forms.

Thus, if $\varphi \simeq \psi$, then $\bigwedge^{k} \varphi \simeq \bigwedge^{k} \psi$; so $\bigwedge^{k}$ is well-defined on $\widehat{W}(K)$. However, $\varphi$ hyperbolic $\nRightarrow \bigwedge^{k} \varphi$ hyperbolic, as $\binom{2 m}{k}$ may be odd.
Thus $\bigwedge^{k}$ is not well-defined on $W(K)$.

Exterior powers of forms and the Witt-Grothendieck ring

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work

Exterior powers of forms and the Witt-Grothendieck ring

## $\lambda$-rings

## Definition

A $\lambda$-ring is a commutative ring $R$ with 1 , and with unary operations $\lambda^{n}: R \longrightarrow R$, for $n=0,1,2, \ldots$ such that for all $x, y \in R$ :
(i) $\lambda^{0}(x)=1$;
(ii) $\lambda^{1}(x)=x$;
(iii) $\lambda^{n}(x+y)=\sum_{i=0}^{n} \lambda^{i}(x) \lambda^{n-i}(y)$.

## Definition

Equivalently: for $x \in R$, consider the formal power series in the indeterminate $t$ defined by $\lambda_{t}(x)=\lambda^{0}(x)+\lambda^{1}(x) t+\lambda^{2}(x) t^{2}+\cdots$. Then the conditions are (i), (ii) and
(iii') $\lambda_{t}(x+y)=\lambda_{t}(x) \lambda_{t}(y)$.
We say that $x \in R$ is of finite degree $n$ if $\lambda_{t}(x)$ is a polynomial of degree $n$.

For $x=x_{1}+\cdots+x_{n}$, each $x_{i}$ of degree $1, \lambda^{k}(x)$ acts like the elementary symmetric polynomial

## Definition

Equivalently: for $x \in R$, consider the formal power series in the indeterminate $t$ defined by $\lambda_{t}(x)=\lambda^{0}(x)+\lambda^{1}(x) t+\lambda^{2}(x) t^{2}+\cdots$. Then the conditions are (i), (ii) and
(iii') $\lambda_{t}(x+y)=\lambda_{t}(x) \lambda_{t}(y)$.
We say that $x \in R$ is of finite degree $n$ if $\lambda_{t}(x)$ is a polynomial of degree $n$.

For $x=x_{1}+\cdots+x_{n}$, each $x_{i}$ of degree $1, \lambda^{k}(x)$ acts like the elementary symmetric polynomial

$$
E_{k}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}} .
$$

Exterior powers of forms and the Witt-Grothendieck ring Central simple algebras with involution

## As with vector spaces:

## Theorem



Since $\bigwedge^{0} \varphi$ is by definition the identity form, we have that $\widehat{W}(K)$ is a $\lambda$-ring with the exterior powers $\Lambda^{k}$ acting as the $\lambda$-operations. The degree of $\varphi \in \widehat{\mathbb{N}}(K)^{+}$is $\operatorname{dim} \varphi$ since $\Lambda^{k} \varphi=0$ for all $k>\operatorname{dim} \varphi$

Since every form is a sum of 1 -forms (each of $\lambda$-ring degree 1 ):


## As with vector spaces:

## Theorem

For $\varphi, \psi \in \widehat{W}(K)$, we have $\bigwedge^{k}(\varphi \perp \psi)=\underset{i+j=k}{\perp} \bigwedge^{i} \varphi \otimes \bigwedge^{j} \psi$.

Since $\bigwedge^{0} \varphi$ is by definition the identity form, we have that $\widehat{W}(K)$ is a $\lambda$-ring with the exterior powers $\Lambda^{k}$ acting as the $\lambda$-operations.

The degree of $\varphi \in \widehat{W}(K)^{+}$is $\operatorname{dim} \varphi$ since $\bigwedge^{k} \varphi=0$ for all $k>\operatorname{dim} \varphi$.

Since every form is a sum of 1 -forms (each of $\lambda$-ring degree 1 )


## As with vector spaces:

## Theorem

For $\varphi, \psi \in \widehat{W}(K)$, we have $\bigwedge^{k}(\varphi \perp \psi)=\underset{i+j=k}{\perp} \bigwedge^{i} \varphi \otimes \bigwedge^{j} \psi$.

Since $\bigwedge^{0} \varphi$ is by definition the identity form, we have that $\widehat{W}(K)$ is a $\lambda$-ring with the exterior powers $\Lambda^{k}$ acting as the $\lambda$-operations.

The degree of $\varphi \in \widehat{W}(K)^{+}$is $\operatorname{dim} \varphi$ since $\bigwedge^{k} \varphi=0$ for all $k>\operatorname{dim} \varphi$.

Since every form is a sum of 1 -forms (each of $\lambda$-ring degree 1 )


## As with vector spaces:

## Theorem

For $\varphi, \psi \in \widehat{W}(K)$, we have $\bigwedge^{k}(\varphi \perp \psi)=\underset{i+j=k}{\perp} \bigwedge^{i} \varphi \otimes \bigwedge^{j} \psi$.

Since $\bigwedge^{0} \varphi$ is by definition the identity form, we have that $\widehat{W}(K)$ is a $\lambda$-ring with the exterior powers $\Lambda^{k}$ acting as the $\lambda$-operations.

The degree of $\varphi \in \widehat{W}(K)^{+}$is $\operatorname{dim} \varphi$ since $\bigwedge^{k} \varphi=0$ for all $k>\operatorname{dim} \varphi$.

Since every form is a sum of 1 -forms (each of $\lambda$-ring degree 1 ):

$$
\Lambda^{k}\left\langle a_{1}, \ldots, a_{n}\right\rangle=\underset{1 \leq i_{1}<\cdots<i_{k} \leq n}{ }\left\langle a_{i_{1}} \cdots a_{i_{k}}\right\rangle=E_{k}\left(\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{n}\right\rangle\right) .
$$

## Power Sums

The (symmetric) power sums $P_{j}$ may be defined in terms of the elementary symmetric polynomials $E_{k}$ via Newton's formulas:

$$
P_{j}=P_{j-1} E_{1}-P_{j-2} E_{2}+\cdots+(-1)^{j-2} P_{1} E_{j-1}+j(-1)^{j-1} E_{j}
$$

## Solving for $E_{k}$ by Cramer's rule gives



## Power Sums

The (symmetric) power sums $P_{j}$ may be defined in terms of the elementary symmetric polynomials $E_{k}$ via Newton's formulas:

$$
P_{j}=P_{j-1} E_{1}-P_{j-2} E_{2}+\cdots+(-1)^{j-2} P_{1} E_{j-1}+j(-1)^{j-1} E_{j}
$$

Solving for $E_{k}$ by Cramer's rule gives

$$
k!\times E_{k}=\operatorname{det}\left(\begin{array}{cccccc}
P_{1} & 1 & & & \\
P_{2} & P_{1} & 2 & & 0 & \\
P_{3} & P_{2} & P_{1} & 3 & & \\
\vdots & \ddots & \ddots & \ddots & \ddots & \\
P_{k-1} & \ddots & \ddots & P_{2} & P_{1} & k-1 \\
P_{k} & P_{k-1} & \ldots & P_{3} & P_{2} & P_{1}
\end{array}\right)
$$

Exterior powers of forms and the Witt-Grothendieck ring

## Definition

Let $R$ be a $\lambda$-ring, let $x \in R$ and let $k$ be a positive integer. We define the $k^{\text {th }}$ Adams operation, $\Psi^{k}$, by

$$
\Psi^{k}(x):=P_{k}(x)
$$

There is a very simple characterisation of Adams operations in the Witt-Grothendieck $\lambda$-ring

## Proposition

Let $n, k \in \mathbb{N}$ and let $\varphi$ be an n-dimensional form. Then, in $\widehat{W}(K)$,


Exterior powers of forms and the Witt-Grothendieck ring

## Definition

Let $R$ be a $\lambda$-ring, let $x \in R$ and let $k$ be a positive integer. We define the $k^{\text {th }}$ Adams operation, $\Psi^{k}$, by

$$
\psi^{k}(x):=P_{k}(x) .
$$

There is a very simple characterisation of Adams operations in the Witt-Grothendieck $\lambda$-ring:

## Proposition

Let $n, k \in \mathbb{N}$ and let $\varphi$ be an n-dimensional form. Then, in $\widehat{W}(K)$,

$$
\Psi^{k}(\varphi)= \begin{cases}n \times\langle 1\rangle, & \text { for } k \text { even; } \\ \varphi, & \text { for } k \text { odd } .\end{cases}
$$

## Thus the earlier Cramer's rule determinant becomes



Let $p_{n}$ be the Lewis polynomial

$$
p_{n}(t):=(t-n)(t-n+2) \cdots(t+n) \in \mathbb{Z}[t] .
$$

Thus the earlier Cramer's rule determinant becomes

$$
k!\times \Lambda^{k}(\varphi)=\operatorname{det}\left(\begin{array}{cccccc}
\varphi & 1 & & & &  \tag{*}\\
n & \varphi & 2 & & 0 & \\
\varphi & n & \varphi & 3 & & \\
\vdots & \ddots & \ddots & \ddots & \ddots & \\
& \ddots & \ddots & n & \varphi & k-1 \\
& & \cdots & \varphi & n & \varphi
\end{array}\right)
$$

Let $p_{n}$ be the Lewis polynomial

$$
p_{n}(t):=(t-n)(t-n+2) \cdots(t+n) \in \mathbb{Z}[t] .
$$

Exterior powers of forms and the Witt-Grothendieck ring

Using elementary row and column operations on ( $*$ ) and setting $k=n+1$ gives

## Theorem

Let $(V, \varphi)$ be a symmetric bilinear space of dimension $n$. Then

$$
(n+1)!\times \bigwedge^{n+1} \varphi=p_{n}(\varphi) \text { in } \widehat{W}(K)
$$

Since $\binom{n}{n+1}=0$, we have recovered David Lewis's result:

## Theorem

Let $(V, \varphi)$ be a symmetric bilinear space of dimension $n$. Then the polynomial $p_{n}$ annihilates the Witt class of $\varphi$ in $W(K)$

Exterior powers of forms and the Witt-Grothendieck ring

Using elementary row and column operations on ( $*$ ) and setting $k=n+1$ gives

## Theorem

Let $(V, \varphi)$ be a symmetric bilinear space of dimension $n$. Then

$$
(n+1)!\times \bigwedge^{n+1} \varphi=p_{n}(\varphi) \text { in } \widehat{W}(K)
$$

Since $\binom{n}{n+1}=0$, we have recovered David Lewis's result:

## Theorem

Let $(V, \varphi)$ be a symmetric bilinear space of dimension $n$. Then the polynomial $p_{n}$ annihilates the Witt class of $\varphi$ in $W(K)$.

Exterior powers of forms and the Witt-Grothendieck ring

Immanants, idempotents and symmetrisers Schur polynomials

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work


## Partitions

Let $K$ be of characteristic 0 . We'll see three main extensions of the exterior powers, the first two based on symmetrising projection operators in the group algebra $K\left[S_{k}\right]$.

## Definition

Let $k$ be a positive integer. A partition of $k$ is a sequence of non-negative integers
with $\pi_{1} \geq \pi_{2} \geq \pi_{3} \geq \ldots$ and $\sum_{i} \pi_{i}=k$. We write $\pi \vdash k$

Can we extend the idea of $k$-fold exterior power - which is associated to the partition $\left[1^{k}\right]=[1,1, \ldots, 1]$ of $k$ - to other partitions of $k$ ?

## Partitions

Let $K$ be of characteristic 0 . We'll see three main extensions of the exterior powers, the first two based on symmetrising projection operators in the group algebra $K\left[S_{k}\right]$.

## Definition

Let $k$ be a positive integer. A partition of $k$ is a sequence of non-negative integers

$$
\pi=\left[\pi_{1}, \pi_{2}, \pi_{3}, \ldots\right]
$$

with $\pi_{1} \geq \pi_{2} \geq \pi_{3} \geq \ldots$ and $\sum_{i} \pi_{i}=k$. We write $\pi \vdash k$.

Can we extend the idea of $k$-fold exterior power - which is associated to the partition $\left[1^{k}\right]=[1,1, \ldots, 1]$ of $k$ - to other partitions of $k$ ?

## Partitions

Let $K$ be of characteristic 0 . We'll see three main extensions of the exterior powers, the first two based on symmetrising projection operators in the group algebra $K\left[S_{k}\right]$.

## Definition

Let $k$ be a positive integer. A partition of $k$ is a sequence of non-negative integers

$$
\pi=\left[\pi_{1}, \pi_{2}, \pi_{3}, \ldots\right]
$$

with $\pi_{1} \geq \pi_{2} \geq \pi_{3} \geq \ldots$ and $\sum_{i} \pi_{i}=k$. We write $\pi \vdash k$.

Can we extend the idea of $k$-fold exterior power - which is associated to the partition $\left[1^{k}\right]=[1,1, \ldots, 1]$ of $k$ - to other partitions of $k$ ?

## Idempotents: Young Symmetrisers

As each conjugacy class in $S_{k}$ is determined by its cycle structure, each $\pi \vdash k$ gives an irreducible character, $\chi_{\pi}$, of $S_{k}$. One defines a primitive idempotent, the Young symmetriser $c_{\pi}$, in $K\left[S_{k}\right]$. (We need to fix a tableau: a labelling of the Young diagram of $\pi$.)

Weyl construction: GL(V) acts diagonally on $V^{\otimes k}$ on the left. Also $S_{k}$ acts on $V^{\otimes k}$ (on the right) by permuting factors

Thus $c_{\pi}$ may be viewed as an endomorphism of $V^{\otimes k}$
We denote the image of $V^{\otimes k}$ under $c_{\pi}$ by $\mathbb{S}^{\pi} V:=\operatorname{Im}\left(c_{\pi} \mid v{ }^{\prime}\right)$ It is an irreducible representation of $\mathrm{GL}(V)$
> $\mathbb{S}^{\pi}$ is a functor from the category of $K$-vector spaces to itself.

## Idempotents: Young Symmetrisers

As each conjugacy class in $S_{k}$ is determined by its cycle structure, each $\pi \vdash k$ gives an irreducible character, $\chi_{\pi}$, of $S_{k}$. One defines a primitive idempotent, the Young symmetriser $c_{\pi}$, in $K\left[S_{k}\right]$. (We need to fix a tableau: a labelling of the Young diagram of $\pi$.) Weyl construction: $\mathbf{G L}(V)$ acts diagonally on $V^{\otimes k}$ on the left. Also $S_{k}$ acts on $V^{\otimes k}$ (on the right) by permuting factors,

$$
\left(v_{1} \otimes \cdots \otimes v_{k}\right) \cdot \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)} .
$$

Thus $c_{\pi}$ may be viewed as an endomorphism of $V$
We denote the image of $V^{\otimes k}$ under $c_{\pi}$ by $\mathbb{S}^{\pi} V:=\operatorname{Im}\left(\left.c_{\pi}\right|_{V \otimes k}\right)$ It is an irreducible representation of $\mathrm{GL}(V)$.
> $\mathbb{S}^{\pi}$ is a functor from the category of $K$-vector spaces to itself.

## Idempotents: Young Symmetrisers

As each conjugacy class in $S_{k}$ is determined by its cycle structure, each $\pi \vdash k$ gives an irreducible character, $\chi_{\pi}$, of $S_{k}$. One defines a primitive idempotent, the Young symmetriser $c_{\pi}$, in $K\left[S_{k}\right]$. (We need to fix a tableau: a labelling of the Young diagram of $\pi$.) Weyl construction: $\mathbf{G L}(V)$ acts diagonally on $V^{\otimes k}$ on the left. Also $S_{k}$ acts on $V^{\otimes k}$ (on the right) by permuting factors,

$$
\left(v_{1} \otimes \cdots \otimes v_{k}\right) \cdot \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}
$$

Thus $c_{\pi}$ may be viewed as an endomorphism of $V^{\otimes k}$.
We denote the image of $V^{\otimes k}$ under $c_{\pi}$ by $\mathbb{S}^{\pi} V:=\operatorname{Im}\left(\left.c_{\pi}\right|_{V \otimes k}\right)$. It is an irreducible representation of $\mathrm{GL}(V)$.
$\mathbb{S}^{\pi}$ is a functor from the category of $K$-vector spaces to itself.

## Idempotents: Young Symmetrisers

As each conjugacy class in $S_{k}$ is determined by its cycle structure, each $\pi \vdash k$ gives an irreducible character, $\chi_{\pi}$, of $S_{k}$. One defines a primitive idempotent, the Young symmetriser $c_{\pi}$, in $K\left[S_{k}\right]$. (We need to fix a tableau: a labelling of the Young diagram of $\pi$.) Weyl construction: $\mathbf{G L}(V)$ acts diagonally on $V^{\otimes k}$ on the left. Also $S_{k}$ acts on $V^{\otimes k}$ (on the right) by permuting factors,

$$
\left(v_{1} \otimes \cdots \otimes v_{k}\right) \cdot \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}
$$

Thus $c_{\pi}$ may be viewed as an endomorphism of $V^{\otimes k}$.
We denote the image of $V^{\otimes k}$ under $c_{\pi}$ by $\mathbb{S}^{\pi} V:=\operatorname{Im}\left(\left.c_{\pi}\right|_{V \otimes k}\right)$. It is an irreducible representation of $\mathbf{G L}(V)$.
$\mathbb{S}^{\pi}$ is a functor from the category of $K$-vector spaces to itself.

## Immanants

## Definition

Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix. Let $\chi$ be a (complex) character of the symmetric group $S_{k}$. Then the immanant of $A$ associated to $\chi$ is

$$
d_{\chi}(A):=\sum_{\sigma \in S_{k}} \chi(\sigma) a_{1 \sigma(1)} \cdots a_{k \sigma(k)} .
$$

(Recall: every complex character of $S_{k}$ is integer-valued.)
The determinant is the immanant associated to the sign character; the permanent is the immanant associated to the trivial character.

## Immanants

## Definition

Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix. Let $\chi$ be a (complex) character of the symmetric group $S_{k}$. Then the immanant of $A$ associated to $\chi$ is

$$
d_{\chi}(A):=\sum_{\sigma \in S_{k}} \chi(\sigma) a_{1 \sigma(1)} \cdots a_{k \sigma(k)} .
$$

(Recall: every complex character of $S_{k}$ is integer-valued.)
The determinant is the immanant associated to the sign character; the permanent is the immanant associated to the trivial character.

## Central idempotents

We also have a central idempotent,

$$
\eta_{\pi}=\frac{\operatorname{deg}\left(\chi_{\pi}\right)}{k!} \sum_{\sigma \in S_{k}} \chi_{\pi}(\sigma) \sigma \in K\left[S_{k}\right]
$$

and we write

$$
\mathbb{P}^{\pi} V:=\operatorname{Im}\left(\left.\eta_{\pi}\right|_{V \otimes k}\right)=\operatorname{Span}\left\{v_{1} * \cdots * v_{k}: v_{1}, \ldots, v_{k} \in V\right\} .
$$

We can define $\mathbb{P}^{\pi} \varphi: \mathbb{P}^{\pi} V \times \mathbb{P}^{\pi} V \longrightarrow K$ by the immanant


## Proposition

The functors $\mathbb{P}^{\pi}$ and $\mathbb{S}^{\pi}$ are well-defined on isometry classes of forms and in W(K)

## Central idempotents

We also have a central idempotent,

$$
\eta_{\pi}=\frac{\operatorname{deg}\left(\chi_{\pi}\right)}{k!} \sum_{\sigma \in S_{k}} \chi_{\pi}(\sigma) \sigma \in K\left[S_{k}\right]
$$

and we write

$$
\mathbb{P}^{\pi} V:=\operatorname{Im}\left(\left.\eta_{\pi}\right|_{V \otimes k}\right)=\operatorname{Span}\left\{v_{1} * \cdots * v_{k}: v_{1}, \ldots, v_{k} \in V\right\} .
$$

We can define $\mathbb{P}^{\pi} \varphi: \mathbb{P}^{\pi} V \times \mathbb{P}^{\pi} V \longrightarrow K$ by the immanant

$$
\mathbb{P}^{\pi} \varphi\left(x_{1} * \cdots * x_{k}, y_{1} * \cdots * y_{k}\right)=d_{\chi_{\pi}}\left(\varphi\left(x_{i}, y_{j}\right)\right) .
$$

## Proposition

The functors $\mathbb{P}^{\pi}$ and $\mathbb{S}^{\pi}$ are well-defined on isometry classes of forms and in $W(K)$.

## Central idempotents

We also have a central idempotent,

$$
\eta_{\pi}=\frac{\operatorname{deg}\left(\chi_{\pi}\right)}{k!} \sum_{\sigma \in S_{k}} \chi_{\pi}(\sigma) \sigma \in K\left[S_{k}\right]
$$

and we write

$$
\mathbb{P}^{\pi} V:=\operatorname{Im}\left(\left.\eta_{\pi}\right|_{V \otimes k}\right)=\operatorname{Span}\left\{v_{1} * \cdots * v_{k}: v_{1}, \ldots, v_{k} \in V\right\} .
$$

We can define $\mathbb{P}^{\pi} \varphi: \mathbb{P}^{\pi} V \times \mathbb{P}^{\pi} V \longrightarrow K$ by the immanant

$$
\mathbb{P}^{\pi} \varphi\left(x_{1} * \cdots * x_{k}, y_{1} * \cdots * y_{k}\right)=d_{\chi_{\pi}}\left(\varphi\left(x_{i}, y_{j}\right)\right) .
$$

## Proposition

The functors $\mathbb{P}^{\pi}$ and $\mathbb{S}^{\pi}$ are well-defined on isometry classes of forms and in $\widehat{W}(K)$.

Exterior powers of forms and the Witt-Grothendieck ring

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work

The Schur polynomial associated to $\pi \vdash k$ in $n$ indeterminates $X_{1}, \ldots, X_{n}$ is the symmetric homogeneous polynomial of degree $k$

$$
s_{\pi}=s_{\pi}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}\left(X_{j}^{\pi_{i}+n-i}\right)}{\operatorname{det}\left(X_{j}^{n-i}\right)}
$$

It has non-negative integer coefficients: the Kostka numbers. Note: $\operatorname{dim} \mathbb{S}^{\pi} V=s_{\pi}(1, \ldots, 1)$.

The polynomial Schur nower of a diagonalised s.b.f.


$\mathbb{T}^{\pi} \varphi: \mathbb{S}^{\pi} V \times \mathbb{S}^{\pi} V \longrightarrow K$ defined by $\mathbb{T}^{\pi} \varphi=s_{\pi}\left(\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{n}\right\rangle\right)$.
This is well-defined on $\widehat{W}(K)$ since every symmetric function is a polynomial in the elementary symmetric polynomials.

The Schur polynomial associated to $\pi \vdash k$ in $n$ indeterminates $X_{1}, \ldots, X_{n}$ is the symmetric homogeneous polynomial of degree $k$

$$
s_{\pi}=s_{\pi}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}\left(X_{j}^{\pi_{i}+n-i}\right)}{\operatorname{det}\left(X_{j}^{n-i}\right)}
$$

It has non-negative integer coefficients: the Kostka numbers. Note: $\operatorname{dim} \mathbb{S}^{\pi} V=s_{\pi}(1, \ldots, 1)$ The polynomial Schur power of a diagonalised s.b.f
$\qquad$

This is well-defined on $\widehat{W}(K)$ since every symmetric function is a polynomial in the elementary symmetric polynomials.

The Schur polynomial associated to $\pi \vdash k$ in $n$ indeterminates $X_{1}, \ldots, X_{n}$ is the symmetric homogeneous polynomial of degree $k$

$$
s_{\pi}=s_{\pi}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}\left(X_{j}^{\pi_{i}+n-i}\right)}{\operatorname{det}\left(X_{j}^{n-i}\right)} .
$$

It has non-negative integer coefficients: the Kostka numbers.
Note: $\operatorname{dim} \mathbb{S}^{\pi} V=s_{\pi}(1, \ldots, 1)$.
The polynomial Schur power of a diagonalised s.b.f

This is well-defined on $\widehat{W}(K)$ since every symmetric function is a polynomial in the elementary symmetric polynomials.

The Schur polynomial associated to $\pi \vdash k$ in $n$ indeterminates $X_{1}, \ldots, X_{n}$ is the symmetric homogeneous polynomial of degree $k$

$$
s_{\pi}=s_{\pi}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}\left(X_{j}^{\pi_{i}+n-i}\right)}{\operatorname{det}\left(X_{j}^{n-i}\right)} .
$$

It has non-negative integer coefficients: the Kostka numbers.
Note: $\operatorname{dim} \mathbb{S}^{\pi} V=s_{\pi}(1, \ldots, 1)$.
The polynomial Schur power of a diagonalised s.b.f. $\varphi=\left\langle a_{1}, \ldots, a_{n}\right\rangle: V \times V \longrightarrow K$ (or its class in $\left.\widehat{W}(K)^{+}\right)$is $\mathbb{T}^{\pi} \varphi: \mathbb{S}^{\pi} V \times \mathbb{S}^{\pi} V \longrightarrow K$ defined by $\mathbb{T}^{\pi} \varphi=s_{\pi}\left(\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{n}\right\rangle\right)$.

This is well-defined on $\widehat{W}(K)$ since every symmetric function is a polynomial in the elementary symmetric polynomials.

The Schur polynomial associated to $\pi \vdash k$ in $n$ indeterminates $X_{1}, \ldots, X_{n}$ is the symmetric homogeneous polynomial of degree $k$

$$
s_{\pi}=s_{\pi}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}\left(X_{j}^{\pi_{i}+n-i}\right)}{\operatorname{det}\left(X_{j}^{n-i}\right)} .
$$

It has non-negative integer coefficients: the Kostka numbers.
Note: $\operatorname{dim} \mathbb{S}^{\pi} V=s_{\pi}(1, \ldots, 1)$.
The polynomial Schur power of a diagonalised s.b.f.
$\varphi=\left\langle a_{1}, \ldots, a_{n}\right\rangle: V \times V \longrightarrow K$ (or its class in $\left.\widehat{W}(K)^{+}\right)$is
$\mathbb{T}^{\pi} \varphi: \mathbb{S}^{\pi} V \times \mathbb{S}^{\pi} V \longrightarrow K$ defined by $\mathbb{T}^{\pi} \varphi=s_{\pi}\left(\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{n}\right\rangle\right)$.
This is well-defined on $\widehat{W}(K)$ since every symmetric function is a polynomial in the elementary symmetric polynomials.

Giambelli's formula $s_{\pi}=\operatorname{det}\left(E_{\mu_{i}-i+j}\right)$ gives

$$
\mathbb{T}^{\pi} \varphi=\operatorname{det}\left(\bigwedge^{\mu_{i}-i+j} \varphi\right)
$$

where $\mu=\left[\mu_{1}, \ldots, \mu_{\ell}\right]$ is the conjugate partition of $\pi$.
One can also show that $k!\times \mathbb{T}^{\pi} \varphi=$

and use this to derive annihilating polynomials in $W(K)$ as before.

Giambelli's formula $s_{\pi}=\operatorname{det}\left(E_{\mu_{i}-i+j}\right)$ gives

$$
\mathbb{T}^{\pi} \varphi=\operatorname{det}\left(\bigwedge^{\mu_{i}-i+j} \varphi\right)
$$

where $\mu=\left[\mu_{1}, \ldots, \mu_{\ell}\right]$ is the conjugate partition of $\pi$.
One can also show that $k!\times \mathbb{T}^{\pi} \varphi=$
$d_{\chi_{\pi}}\left(\begin{array}{cccccc}\Psi^{1}(\varphi) & 1 & & & & 0 \\ \Psi^{2}(\varphi) & \Psi^{1}(\varphi) & 2 & & & 0 \\ \Psi^{3}(\varphi) & \Psi^{2}(\varphi) & \Psi^{1}(\varphi) & 3 & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ \Psi^{k-1}(\varphi) & \Psi^{k-2}(\varphi) & \ddots & \ddots & \Psi^{1}(\varphi) & k-1 \\ \Psi^{k}(\varphi) & \Psi^{k-1}(\varphi) & \Psi^{k-2}(\varphi) & \ldots & \Psi^{2}(\varphi) & \Psi^{1}(\varphi)\end{array}\right)$
and use this to derive annihilating polynomials in $W(K)$ as before.

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work


## Question

How far can definitions on vector spaces/elements of $\widehat{W}(K)$ be carried over to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?



## Question

How far can definitions on vector spaces/elements of $\widehat{W}(K)$ be carried over to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?

In [KMRT, 1998], $\lambda$-powers of central simple algebras with involution are defined using an $S_{k}$ action (c.f. Weyl construction).

The Goldman element is the unique element $\alpha \in A \otimes K A$ such that $\operatorname{Sand}(\alpha)=\operatorname{Trd}_{A}$, the reduced trace.
$\alpha$ plays the role of a transposition in this sense: if $A=$ End $k V$ then, identifying $A \otimes_{K} A=\operatorname{End}_{K}\left(V \otimes_{K} V\right), \alpha$ is defined by


## Question

How far can definitions on vector spaces/elements of $\widehat{W}(K)$ be carried over to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?

In [KMRT, 1998], $\lambda$-powers of central simple algebras with involution are defined using an $S_{k}$ action (c.f. Weyl construction).

The Goldman element is the unique element $\alpha \in A \otimes_{K} A$ such that $\operatorname{Sand}(\alpha)=\operatorname{Trd}_{A}$, the reduced trace.
$\alpha$ plays the role of a transposition in this sense: if $A=$ End $_{K} V$, then, identifying $A \otimes_{K} A=\operatorname{End}_{K}\left(V \otimes_{K} V\right), \alpha$ is defined by


## Question

How far can definitions on vector spaces/elements of $\widehat{W}(K)$ be carried over to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?

In [KMRT, 1998], $\lambda$-powers of central simple algebras with involution are defined using an $S_{k}$ action (c.f. Weyl construction).

The Goldman element is the unique element $\alpha \in A \otimes_{K} A$ such that $\operatorname{Sand}(\alpha)=\operatorname{Trd}_{A}$, the reduced trace.
$\alpha$ plays the role of a transposition in this sense: if $A=\operatorname{End}_{K} V$, then, identifying $A \otimes_{K} A=\operatorname{End}_{K}\left(V \otimes_{K} V\right), \alpha$ is defined by

$$
\alpha\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1} \quad \text { for all } v_{1}, v_{2} \in V .
$$

## We proceed as in [KMRT, 10.A]:

## Proposition

Let $k \geq 1$. There is a natural homomorphism $\alpha_{k}: S_{k} \longrightarrow\left(A^{\otimes k}\right)^{\times}$ such that in case $A=\operatorname{End}_{K} V$, and identifying $A^{\otimes k}=\operatorname{End}_{K}\left(V^{\otimes k}\right)$,

$$
\alpha_{k}(\sigma)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}
$$

for all $\sigma \in S_{k}$ and $v_{1}, \ldots, v_{k} \in V$.

Let $\pi \vdash k$. We define


Given a tableau on $\pi$, we can also define an element $e_{\pi}$ of $A^{\otimes k}$ analogous to a Young symmetriser.

## We proceed as in [KMRT, 10.A]:

## Proposition

Let $k \geq 1$. There is a natural homomorphism $\alpha_{k}: S_{k} \longrightarrow\left(A^{\otimes k}\right)^{\times}$ such that in case $A=\operatorname{End}_{k} V$, and identifying $A^{\otimes k}=\operatorname{End}_{K}\left(V^{\otimes k}\right)$,

$$
\alpha_{k}(\sigma)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}
$$

for all $\sigma \in S_{k}$ and $v_{1}, \ldots, v_{k} \in V$.

Let $\pi \vdash k$. We define

$$
\zeta_{\pi}=\sum_{\sigma \in S_{k}} \chi_{\pi}(\sigma) \alpha_{k}(\sigma) \in A^{\otimes k}
$$

Given a tableau on $\pi$, we can also define an element $e_{\pi}$ of $A^{\otimes k}$ analogous to a Young symmetriser.

## We proceed as in [KMRT, 10.A]:

## Proposition

Let $k \geq 1$. There is a natural homomorphism $\alpha_{k}: S_{k} \longrightarrow\left(A^{\otimes k}\right)^{\times}$ such that in case $A=\operatorname{End}_{k} V$, and identifying $A^{\otimes k}=\operatorname{End}_{K}\left(V^{\otimes k}\right)$,

$$
\alpha_{k}(\sigma)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}
$$

for all $\sigma \in S_{k}$ and $v_{1}, \ldots, v_{k} \in V$.

Let $\pi \vdash k$. We define

$$
\zeta_{\pi}=\sum_{\sigma \in S_{k}} \chi_{\pi}(\sigma) \alpha_{k}(\sigma) \in A^{\otimes k}
$$

Given a tableau on $\pi$, we can also define an element $e_{\pi}$ of $A^{\otimes k}$ analogous to a Young symmetriser.

## Lemma

If $A$ is split, there are natural isomorphisms of $A^{\otimes k}$-modules:

$$
A^{\otimes k} e_{\pi}=\operatorname{Hom}_{K}\left(\mathbb{S}^{\pi} V, V^{\otimes k}\right), \quad A^{\otimes k} \zeta_{\pi}=\operatorname{Hom}_{K}\left(\mathbb{P}^{\pi} V, V^{\otimes k}\right)
$$

with reduced dimensions
$\operatorname{rdim}\left(A^{\otimes k} e_{\pi}\right)=s_{\pi}(1, \ldots, 1), \operatorname{rdim}\left(A^{\otimes k} \zeta_{\pi}\right)=\operatorname{deg}\left(\chi_{\pi}\right) s_{\pi}(1, \ldots, 1)$.

## Definition

Let $\pi \vdash k$. Define $\mathbb{S}^{\pi} A=$ End $_{A \otimes k}\left(A^{\otimes k} e_{\pi}\right), \mathbb{P}^{\pi} A=\operatorname{End}_{A^{\otimes k}}\left(A^{\otimes k} \zeta_{\pi}\right)$

As in [KMRT], each of these is a central simple $K$-algebra
Brauer-equivalent to $A^{\otimes k}$, with degree as given by the reduced
dimensions in the lemma. There are natural isomorphisms
$\mathbb{S}^{\pi}$ End $_{k} V=$ End $_{K} \mathbb{S}^{\pi} V$ and $\mathbb{P}^{\pi}$ End $_{K} V=$ End $_{K} \mathbb{P}^{\pi} V$.

## Lemma

If $A$ is split, there are natural isomorphisms of $A^{\otimes k}$-modules:

$$
A^{\otimes k} e_{\pi}=\operatorname{Hom}_{K}\left(\mathbb{S}^{\pi} V, V^{\otimes k}\right), \quad A^{\otimes k} \zeta_{\pi}=\operatorname{Hom}_{K}\left(\mathbb{P}^{\pi} V, V^{\otimes k}\right)
$$

with reduced dimensions
$\operatorname{rdim}\left(A^{\otimes k} e_{\pi}\right)=s_{\pi}(1, \ldots, 1), \operatorname{rdim}\left(A^{\otimes k} \zeta_{\pi}\right)=\operatorname{deg}\left(\chi_{\pi}\right) s_{\pi}(1, \ldots, 1)$.

## Definition

Let $\pi \vdash k$. Define $\mathbb{S}^{\pi} A=\operatorname{End}_{A^{\otimes k}}\left(A^{\otimes k} e_{\pi}\right), \mathbb{P}^{\pi} A=\operatorname{End}_{A^{\otimes k}}\left(A^{\otimes k} \zeta_{\pi}\right)$

As in [KMRT], each of these is a central simple K-algebra, Brauer-equivalent to $A^{\otimes k}$, with degree as given by the reduced dimensions in the lemma. There are natural isomorphisms $\mathbb{S}^{\pi}$ End $_{K} V=$ End $_{K} \mathbb{S}^{\pi} V$ and $\mathbb{P}^{\pi}$ End $_{K} V=$ End $_{K} \mathbb{P}^{\pi} V$.

## Lemma

If $A$ is split, there are natural isomorphisms of $A^{\otimes k}$-modules:

$$
A^{\otimes k} e_{\pi}=\operatorname{Hom}_{K}\left(\mathbb{S}^{\pi} V, V^{\otimes k}\right), \quad A^{\otimes k} \zeta_{\pi}=\operatorname{Hom}_{K}\left(\mathbb{P}^{\pi} V, V^{\otimes k}\right)
$$

with reduced dimensions
$\operatorname{rdim}\left(A^{\otimes k} e_{\pi}\right)=s_{\pi}(1, \ldots, 1), \operatorname{rdim}\left(A^{\otimes k} \zeta_{\pi}\right)=\operatorname{deg}\left(\chi_{\pi}\right) s_{\pi}(1, \ldots, 1)$.

## Definition

Let $\pi \vdash k$. Define $\mathbb{S}^{\pi} A=\operatorname{End}_{A^{\otimes k}}\left(A^{\otimes k} e_{\pi}\right), \mathbb{P}^{\pi} A=\operatorname{End}_{A^{\otimes k}}\left(A^{\otimes k} \zeta_{\pi}\right)$

As in [KMRT], each of these is a central simple $K$-algebra, Brauer-equivalent to $A^{\otimes k}$, with degree as given by the reduced dimensions in the lemma. There are natural isomorphisms $\mathbb{S}^{\pi}$ End $_{K} V=$ End $_{K} \mathbb{S}^{\pi} V$ and $\mathbb{P}^{\pi}$ End $_{K} V=$ End $_{K} \mathbb{P}^{\pi} V$.

We can use Schur powers of hermitian forms to get induced (adjoint) involutions on Schur powers of central simple algebras. The adjoint involution to $h^{\otimes k}$ is $\tau_{h} \otimes k=\left(\tau_{h}\right)^{\otimes k}$. Every $f \in \mathbb{P}^{\pi} A=\operatorname{End}_{A \otimes k}\left(A^{\otimes k} \zeta_{\pi}\right)$ is right multiplication by $u \zeta_{\pi}$, for some $u \in A$ Define $\mathbb{P}^{\pi} \tau(f)$ to be right multiplication by $\tau^{\otimes k}(u) \zeta_{\pi}$

Proposition
If $A=$ End $_{K} V$ and $\tau=\tau_{h}$ is the adjoint involution w.r.t. a non-singular hermitian form $h$ on $V$, then under the isomorphism $\mathbb{P}^{\pi}$ End $_{K} V=$ End $_{K} \mathbb{P}^{\pi} V$, the involution $\mathbb{P}^{\pi} \tau$ is the adjoint involution w.r.t. the hermitian form $\mathbb{P}^{\pi} h$ on $\mathbb{P}^{\pi} V$.

We can use Schur powers of hermitian forms to get induced (adjoint) involutions on Schur powers of central simple algebras.
The adjoint involution to $h^{\otimes k}$ is $\tau_{h \otimes k}=\left(\tau_{h}\right)^{\otimes k}$.
Every $f \in \mathbb{P}^{\pi} A=\operatorname{End}_{A^{\otimes k}}\left(A^{\otimes k} \zeta_{\pi}\right)$ is right multiplication by $u \zeta_{\pi}$, for some $u \in A^{\otimes k}$.

Define $\mathbb{P}^{\pi} \tau(f)$ to be right multiplication by $\tau^{\otimes k}(u) \zeta_{\pi}$.


We can use Schur powers of hermitian forms to get induced (adjoint) involutions on Schur powers of central simple algebras.
The adjoint involution to $h^{\otimes k}$ is $\left.\tau_{h}\right)_{k}=\left(\tau_{h}\right)^{\otimes k}$.
Every $f \in \mathbb{P}^{\pi} A=\operatorname{End}_{A^{\otimes k}}\left(A^{\otimes k} \zeta_{\pi}\right)$ is right multiplication by $u \zeta_{\pi}$, for some $u \in A^{\otimes k}$.

Define $\mathbb{P}^{\pi} \tau(f)$ to be right multiplication by $\tau^{\otimes k}(u) \zeta_{\pi}$.

## Proposition

If $A=\operatorname{End}_{K} V$ and $\tau=\tau_{h}$ is the adjoint involution w.r.t. a non-singular hermitian form $h$ on $V$, then under the isomorphism $\mathbb{P}^{\pi}$ End $_{K} V=$ End $_{K} \mathbb{P}^{\pi} V$, the involution $\mathbb{P}^{\pi} \tau$ is the adjoint involution w.r.t. the hermitian form $\mathbb{P}^{\pi} h$ on $\mathbb{P}^{\pi} V$.

Exterior powers of forms and the Witt-Grothendieck ring

## Outline

(1) Exterior powers of forms and the Witt-Grothendieck ring

- Preliminaries
- Exterior powers
- The Witt-Grothendieck ring as a $\lambda$-ring
(2) Schur powers of forms
- Immanants, idempotents and symmetrisers
- Schur polynomials
(3) Central simple algebras with involution
- $\lambda$-powers of central simple algebras and extensions
- Current and future work


## Work in progress

## Question

## Can we apply Schur polynomials to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?
- There is an associative commutative orthogonal sum $\perp$ of Morita-equivalent central simple $K$-algebras with involution [Dejaiffe, 1998] which commutes with taking degrees
- $\perp$ can be extended to Morita-equivalent K-algebras with antiautomorphism [Cortella and Lewis, 2009]
- $\lambda^{k} A\left(\& \mathbb{P}^{\pi} A, \ldots\right)$ is Brauer-equivalent to $A^{\otimes k}[K M R T, 10.4]$
- For $A$ a central simple $K$-algebra with involution, of exponent 2 (e.g., involution of first kind), or split: $A^{\otimes k}$ and $A^{\otimes \ell}$ are Brauer-equivalent if $k \equiv \ell(\bmod 2)$


## Work in progress

## Question

Can we apply Schur polynomials to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?
- There is an associative commutative orthogonal sum $\perp$ of Morita-equivalent central simple $K$-algebras with involution [Dejaiffe, 1998] which commutes with taking degrees
- $\perp$ can be extended to Morita-equivalent K-algebras with antiautomorphism [Cortella and Lewis, 2009]
- $\lambda^{k} A\left(\& \mathbb{P}^{\pi} A\right.$, is Brauer-equivalent to $A$
- For $A$ a central simple K-algebra with involution, of exponent 2 (e.g., involution of first kind), or split: $A^{\otimes k}$ and $A^{\otimes \ell}$ are Brauer-equivalent if $k \equiv \ell(\bmod 2)$


## Work in progress

## Question

Can we apply Schur polynomials to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?
- There is an associative commutative orthogonal sum $\perp$ of Morita-equivalent central simple $K$-algebras with involution [Dejaiffe, 1998] which commutes with taking degrees
- $\perp$ can be extended to Morita-equivalent $K$-algebras with antiautomorphism [Cortella and Lewis, 2009]
- For $A$ a central simple $K$-algebra with involution, of exponent 2 (e.g., involution of first kind), or split: $A^{\otimes k}$ and $A^{\otimes \ell}$ are Brauer-equivalent if $k \equiv \ell(\bmod 2)$


## Work in progress

## Question

Can we apply Schur polynomials to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?
- There is an associative commutative orthogonal sum $\perp$ of Morita-equivalent central simple $K$-algebras with involution [Dejaiffe, 1998] which commutes with taking degrees
- $\perp$ can be extended to Morita-equivalent $K$-algebras with antiautomorphism [Cortella and Lewis, 2009]
- $\lambda^{k} A\left(\& \mathbb{P}^{\pi} A, \ldots\right)$ is Brauer-equivalent to $A^{\otimes k}[K M R T, 10.4]$
- For $A$ a central simple K-algebra with involution, of exponent

2 (e.g., involution of first kind), or split: $A^{\otimes k}$ and $A^{\otimes \ell}$ are Brauer-equivalent if $k \equiv \ell(\bmod 2)$

## Work in progress

## Question

Can we apply Schur polynomials to

- central simple K-algebras with involution;
- other K-algebras with involution (or just antiautomorphism)?
- There is an associative commutative orthogonal sum $\perp$ of Morita-equivalent central simple $K$-algebras with involution [Dejaiffe, 1998] which commutes with taking degrees
- $\perp$ can be extended to Morita-equivalent $K$-algebras with antiautomorphism [Cortella and Lewis, 2009]
- $\lambda^{k} A\left(\& \mathbb{P}^{\pi} A, \ldots\right)$ is Brauer-equivalent to $A^{\otimes k}[K M R T, 10.4]$
- For $A$ a central simple $K$-algebra with involution, of exponent 2 (e.g., involution of first kind), or split: $A^{\otimes k}$ and $A^{\otimes \ell}$ are Brauer-equivalent if $k \equiv \ell(\bmod 2)$


## Definition

A partial abelian monoid (PAM, for short) is a nonempty set $M$ together with a partially defined binary relation $\oplus$ with domain $P \subseteq M \times M$ satisfying the following conditions.
P1 (Commutativity). If $a P b$ then $b P a$ and $a \oplus b=b \oplus a$.
P2 (Associativity). If $a P b$ and $(a \oplus b) P c$ then $b P c$ and $a P(b \oplus c)$, and $(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
P3 (Neutral element). There is a (necessarily unique) element $0 \in M$ such that for all $a \in M$ we have 0 Pa and $a \oplus 0=a$.

Then the set $Y(K)^{+}$of isomorphism classes of central simple $K$-algebras with involution under $\perp$ is a PAM, where only Morita-equivalent ones are related.

## Definition

A partial abelian monoid (PAM, for short) is a nonempty set $M$ together with a partially defined binary relation $\oplus$ with domain $P \subseteq M \times M$ satisfying the following conditions.
P1 (Commutativity). If $a P b$ then $b P a$ and $a \oplus b=b \oplus a$.
P2 (Associativity). If $a P b$ and $(a \oplus b) P c$ then $b P c$ and $a P(b \oplus c)$, and $(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
P3 (Neutral element). There is a (necessarily unique) element $0 \in M$ such that for all $a \in M$ we have $0 P a$ and $a \oplus 0=a$.

Then the set $Y(K)^{+}$of isomorphism classes of central simple $K$-algebras with involution under $\perp$ is a PAM, where only Morita-equivalent ones are related.

## Speculation

Idea: Consider Grothendieck completion $Y(K)$ of $Y(K)^{+}$under $\perp$, restricting to where $\perp$ makes sense. Cancellation seems unlikely!

```
Note: Don't collapse hyperbolic involutions to one point as in
[Lewis, 2000], since exterior powers not well-defined on Witt ring
Noed to check:
```

- Tensor product $\otimes$ on elements of $Y(K)$ distributes over $\perp$ : would make $Y(K)$ a partial ring
- Formula

holds: would make $Y(K)$ a partial $\lambda$-ring. (Evidence so far: the degrees add correctly)


## Speculation

Idea: Consider Grothendieck completion $Y(K)$ of $Y(K)^{+}$under $\perp$, restricting to where $\perp$ makes sense. Cancellation seems unlikely!

Note: Don't collapse hyperbolic involutions to one point as in [Lewis, 2000], since exterior powers not well-defined on Witt ring Need to check:

- Tensor product $\otimes$ on elements of $Y(K)$ distributes over $\perp$ : would make $Y(K)$ a partial ring
- Formula

holds: would make $Y(K)$ a partial $\lambda$-ring. (Evidence so far: the degrees add correctly)


## Speculation

Idea: Consider Grothendieck completion $Y(K)$ of $Y(K)^{+}$under $\perp$, restricting to where $\perp$ makes sense. Cancellation seems unlikely!

Note: Don't collapse hyperbolic involutions to one point as in [Lewis, 2000], since exterior powers not well-defined on Witt ring Need to check:

- Tensor product $\otimes$ on elements of $Y(K)$ distributes over $\perp$ : would make $Y(K)$ a partial ring
- Formula

holds: would make $Y(K)$ a partial $\lambda$-ring. (Evidence so far: the degrees add correctly)


## Speculation

Idea: Consider Grothendieck completion $Y(K)$ of $Y(K)^{+}$under $\perp$, restricting to where $\perp$ makes sense. Cancellation seems unlikely!

Note: Don't collapse hyperbolic involutions to one point as in [Lewis, 2000], since exterior powers not well-defined on Witt ring Need to check:

- Tensor product $\otimes$ on elements of $Y(K)$ distributes over $\perp$ : would make $Y(K)$ a partial ring
- Formula

$$
\bigwedge^{k}((A, \sigma) \perp(B, \tau))=\underset{i+j=k}{\perp} \bigwedge^{i}(A, \sigma) \otimes \bigwedge^{j}(B, \tau)
$$

holds: would make $Y(K)$ a partial $\lambda$-ring. (Evidence so far: the degrees add correctly)

## Possible outcomes

Then polynomials in one indeterminate which are either even or odd (or homogeneous) would make sense in $Y(K)$, as all the summands will be Morita equivalent.

Thus determinantal formulas (e.g., Giambelli) could be used to define polynomial Schur powers on $Y(K)$.

If there are reasonably straightformard expressions for Adams operations, we may even be able to define annihilating polynomials in $Y(K)$, since these polynomials are necessarily either even or odd (they must respect the signature).

## Possible outcomes

Then polynomials in one indeterminate which are either even or odd (or homogeneous) would make sense in $Y(K)$, as all the summands will be Morita equivalent.

Thus determinantal formulas (e.g., Giambelli) could be used to define polynomial Schur powers on $Y(K)$.

If there are reasonably straightforward expressions for Adams operations, we may even be able to define annihilating polynomials in $Y(K)$, since these polynomials are necessarily either even or odd (they must respect the signature)

## Possible outcomes

Then polynomials in one indeterminate which are either even or odd (or homogeneous) would make sense in $Y(K)$, as all the summands will be Morita equivalent.

Thus determinantal formulas (e.g., Giambelli) could be used to define polynomial Schur powers on $Y(K)$.

If there are reasonably straightforward expressions for Adams operations, we may even be able to define annihilating polynomials in $Y(K)$, since these polynomials are necessarily either even or odd (they must respect the signature).

