Higher product levels

Jaka Cimprič,
University of Ljubljana, Slovenia

17. maj 2009

The commutative case

The n-th level of a field F was defined by J.-P. Joly [1970] as

$$
\mathrm{s}_{n}(F)=\min \left\{t \mid-1 \in \sum_{i=1}^{t} F^{n}\right\}
$$

The convention $\min \emptyset=\infty$ is used. If n is odd then $\mathrm{s}_{n}(F)=1$, hence the interesting case is $n=2 m$.

Joly proved that there exists a function $u: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\mathrm{s}_{2 m}(F) \leq u\left(\mathrm{~s}_{2}(F), 2 m\right)
$$

for every field F and every $m \in \mathbb{N}$. In particular, if $\mathrm{s}_{2}(F)$ is finite then $\mathrm{s}_{2 m}(F)$ is finite for every $m \in \mathbb{N}$.

The commutative case

The construction of Joly's function u is based on Hilbert identities:
Write $L(r, n):=\binom{n+2 r-1}{n-1}$. For every $r, n \in \mathbb{N}$ there exist $\lambda_{i} \in \mathbb{Q}^{+}$ and $a_{i j} \in \mathbb{Z}(1 \leq i \leq L(r, n), 1 \leq j \leq n)$ such that

$$
\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{r}=\sum_{i=1}^{L(r, n)} \lambda_{i}\left(a_{i 1} x_{1}+\ldots+a_{i n} x_{n}\right)^{2 r}
$$

They are used in the proof the Waring numbers $G(n)$ are finite.
If char $F \neq 2$ and $t:=s_{2}(F)<\infty$ (say $-1=a_{1}^{2}+\cdots+a_{t}^{2}$), then every element $b \in F$ can be written as a sum of $t+1$ squares:
$b=\left(\frac{1+b}{2}\right)^{2}-\left(\frac{1-b}{2}\right)^{2}=\left(\frac{1+b}{2}\right)^{2}+\left(a_{1}^{2}+\ldots+a_{t}^{2}\right)\left(\frac{1-b}{2}\right)^{2}$.

The commutative case

It follows, that for any odd / we have

$$
\begin{aligned}
-1 & =(-1)^{\prime}=\left(a_{1}^{2}+\cdots+a_{t}^{2}\right)^{\prime}=\sum_{j_{1}=1}^{L(I, t)} \lambda_{j_{1}} b_{j_{1}}^{2 \prime}= \\
& =\sum_{j_{1}=1}^{L(I, t)} \lambda_{j_{1}}\left(c_{j_{1}, 1}^{2}+\cdots+c_{j_{1}, t+1}^{2}\right)^{2 \prime}=\sum_{j_{2}=1}^{L(2 /, t+1)} \sum_{j_{1}=1}^{L(I, t)} \lambda_{j_{1} j_{2}} b_{j_{1} j_{2}}^{4 /}= \\
& =\cdots=\sum_{j_{k}=1}^{L\left(2^{k-1} /, t+1\right)} \cdots \sum_{j_{2}=1}^{L(2 I, t+1)} \sum_{j_{1}=1}^{L(I, t)} \lambda_{j_{1} j_{2} \ldots j_{k}} b_{j_{1} j_{2} \ldots j_{k}}^{2^{k} /} .
\end{aligned}
$$

Therefore
$\mathrm{s}_{2^{k} I}(F) \leq G\left(2^{k} I\right) L(I, t) L(2 I, t+1) \ldots L\left(2^{k-1} I, t+1\right)=: u\left(t, 2^{k} I\right)$.

The definition in the noncommutative case

The problem in the noncommutative case is that a product of two n-th powers need not be an n-th power. Hence we can define higher levels of skew fields in several different ways. We choose the following definition:

Let D be a skew field and $n \in \mathbb{N}$. Write D^{n} for the set of all n-th powers of elements from D and $\left[D^{\times}, D^{\times}\right]$for the set of all multiplicative commutators of nonzero elements from D. The set of all finite products of elements from $D^{n} \cup\left[D^{\times}, D^{\times}\right]$will be denoted by $\Pi_{n}(D)$. The number

$$
\mathrm{ps}_{n}(D)=\min \left\{k \mid \exists z_{1}, \ldots, z_{k} \in \Pi_{n}(D):-1=\sum_{i=1}^{k} z_{i}\right\}
$$

will be called the n-th product level of D.

The main result

The main result is:

- If $\mathrm{ps}_{2^{k}}(D)$ is finite for some k, then $\mathrm{ps}_{2^{k} /}(D)$ is finite for every I. Moreover, there exists a function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$, such that $\mathrm{ps}_{2^{k} /}(D) \leq f\left(\mathrm{ps}_{2^{k}}(D), k, I\right)$.
- For every k there exists a skew field D such that $\operatorname{ps}_{2^{k}}(D)$ is finite but $\mathrm{ps}_{2^{k+1}}(D)$ is not. Moreover, we can replace 'finite' by 'equal to one'.

Orderings of higher exponent

How do we prove that $\mathrm{ps}_{n}(D)=\infty$? We contruct an ordering of exponent n on D, i.e. a normal subgroup P of D^{\times}such that the factor group D^{\times} / P is cyclic of order $n,-1 \notin P$ and $P+P \subseteq P$.

Clearly, the existence of an ordering of exponent n on D implies that $\mathrm{ps}_{n}(D)=\infty$. Namely, every ordering of exponent n contains all finite sums of elements from $\Pi_{n}(D)$ but it does not contain -1 .

The opposite direction, i.e. that $\mathrm{ps}_{n}(D)=\infty$ implies the existence of an ordering of exponent n, is much more difficult to prove. This was done by V . Powers (by modifying E. Becker's original proof in the commutative case.)

$\mathrm{ps}_{2^{k}}<\infty \Rightarrow \mathrm{ps}_{2^{k} /}<\infty$, Proof 1

If P is an ordering of some exponent, then the set

$$
\mathrm{A}(P)=\left\{a \in A \mid \exists r \in \mathbb{Q}^{+}: r \pm a \in P\right\}
$$

is a valuation ring and the set $\operatorname{Arch}(P) \cap \mathrm{A}(P)$ where

$$
\operatorname{Arch}(P)=\left\{a \in A \mid \forall r \in \mathbb{Q}^{+}: r+a \in P\right\}
$$

is an ordering with exponent 2 on $\mathrm{A}(P)$.
It follows that every subgroup of D^{\times}containing P is closed for addition, hence it is an ordering of some exponent.
In particular, if P has exponent $n=2^{k} l$, then the multiplicative set $\left\{d \in D^{\times} \mid d^{\prime} \in P\right\}$ is an ordering of exponent 2^{k}. This is a nonconstructive proof of $\mathrm{ps}_{2^{k}}(D)<\infty \Rightarrow \mathrm{ps}_{2^{k} /}(D)<\infty$.

$\mathrm{ps}_{2^{k}}<\infty \Rightarrow \mathrm{ps}_{2^{k} /}<\infty$, Proof 2

Using the theory of orderings of higher exponents, it is possible to prove that for every odd number I, every number $k \geq 1$ and every $d \in D$ there exist $g_{0}, \ldots, g_{2^{k}-1} \in \sum_{i=1}^{a_{2}{ }^{k} /} \mathbb{Q}(d)^{2^{k} /}$ such that

$$
(1+d)^{\prime}=g_{0}+g_{1} d^{\prime}+\cdots+g_{2^{k}-1} d^{\left(2^{k}-1\right)!}
$$

By induction on t, one can obtain the following noncommutative analogue of Hilbert identities: If $s_{1}, \ldots, s_{t} \in \Pi_{2^{k}}(D)$ and k, l as above, then $\left(s_{1}+\cdots+s_{t}\right)^{\prime} \in \Pi_{2^{k} /}(D)$.
If we do the induction carefully, we can obtain the bound

$$
\mathrm{ps}_{2^{k} /}(D) \leq\left(2^{k} a_{2^{k} l}\right)^{2 \mathrm{ps}_{2^{k}}(D)}
$$

where a_{n} is the upper bound for n-th Pythagoras numbers of $\mathbb{Q}(d)$, $d \in D$. (The existence of a_{n} was proved by E. Becker.)

$\mathrm{ps}_{2^{k}}<\infty \nRightarrow \mathrm{ps}_{2^{k+1}}<\infty$

Let k be a formally real field, m an integer and

$$
R_{m}:=k\langle X, Y\rangle /\left(Y X+X^{2 m+1} Y\right)
$$

It is known that R_{m} is a left Ore domain, so it has a left skew-field of fractions D_{m}.

The relation implies that $-1 \in \Pi_{m}\left(D_{m}\right)$, hence $\mathrm{ps}_{m}\left(D_{m}\right)=1$.
We can construct an ordering of exponent $2 m$ on D_{m}, hence $\mathrm{ps}_{2 m}\left(D_{m}\right)=\infty$. We provide the details of the construction.

$\mathrm{ps}_{2^{k}}<\infty \nRightarrow \mathrm{ps}_{2^{k+1}}<\infty$

Every element $f \in R_{m}$ can be written as $f=\sum_{i, j} c_{i, j} X^{i} Y^{j}$. We assume that monomials are ordered anti-lexicographically, i.e. $X^{i_{1}} Y^{j_{1}} \succ X^{i_{2}} Y^{j_{2}}$ if and only if $j_{1}>j_{2}$ or $j_{1}=j_{2}$ and $i_{1}>i_{2}$.
If the leading term of f is $c_{p, q} X^{p} Y^{q}$, then we say that $f>0$ iff $\left(p=4 m\right.$ and $\left.c_{p, q}>0\right)$ or $\left(p=4 m+2\right.$ and $\left.c_{p, q}<0\right)$.

It turns out that the set

$$
P=\left\{f g^{-1} \in D^{\times} \mid f g>0\right\}
$$

is an ordering on D of exponent $2 m$.

Another higher product level

Let D be a skew field and $n \in \mathbb{N}$. Write $P_{n}(D)$ for the set of all finite products of n-th powers of elements from D. The number

$$
\mathrm{ms}_{n}(D)=\min \left\{k \mid \exists z_{1}, \ldots, z_{k} \in P_{n}(D):-1=\sum_{i=1}^{k} z_{i}\right\}
$$

can also be considered the n-th product level of D.
Is $\mathrm{ms}_{n}(D)=\mathrm{ps}_{n}(D)$ for every n and D ? The answer is no!
Does $\mathrm{ms}_{n}(D)<\infty$ imply that $\mathrm{ms}_{k n}(D)<\infty$ for any $k>1$? । don't know!

Is there a variant of orderings of exponent n corresponding to $\mathrm{ms}_{n}(D)=\infty$? Yes, replace the cyclic group by a nonabelian group of exponent n. Not much is known about such orderings!

Bibliography

- Becker, E., Summen n-ter Potenzen in Körpern, J. Reine Angew. Math. 307/308 (1979), 8-30.
- Becker, E., The real holomorphy ring and sums of $2 n$-th powers, in Géométrie Algébrique Réelle et Fomes Quadratiques, Lecture notes in Math. 959, Springer.
- Cimprič, J., Higher product levels of noncommutative rings, Comm. Algebra 29 (1) (2001), 193-200.
- Cimprič, J. and D. Velušček, Higher product levels of domains, J. Pure Appl. Algebra 198 (2005), pp. 67-74.
- Cimprič, J., A variant of higher product levels of integral domains and *-domains, Comm. Algebra 33 (2005), pp. 4035-4041.
- Cimprič, J. and I. Klep, Generalized orderings and rings of fractions, Algebra Universalis 55 (2006), pp. 93-109.
- Joly, J.-R., Sommes de puissances d-ièmes dans un anneau commutatif, (French) Acta Arith. 17 (1970) 37-114.
- Klep I. and D. Velušček, n-real valuations and the higher level version of the Krull-Baer theorem, J. Algebra, 2004, vol. 279 (1), pp. 345-361.
- Powers V., Holomorphy rings and higher level orders on skew fields, J. Algebra 136 (1991), no. 1, 51-59.

